Skip to main content
Advanced Search

Filters: Tags: Interested public (X) > partyWithName: Western Alaska Landscape Conservation Cooperative (X) > partyWithName: Arctic Landscape Conservation Cooperative (X)

36 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Integrated Ecosystem Model is designed to help resource managers understand the nature and expected rate of landscape change. Maps and other products generated by the IEM will illustrate how arctic and boreal landscapes are expected to alter due to climate-driven changes to vegetation, disturbance, hydrology, and permafrost. The products will also provide resource managers with an understanding of the uncertainty in the expected outcomes.
In Alaska, changes in snow, ice, and weather, have resulted in risks to human lives, infrastructure damage, threats to valuable natural resources, and disruption of hunting, fishing, and livelihoods.Leaders from the Aleutians to the Chukchi Sea came together for a series of Coastal Resilience and Adaptation Workshops, spearheaded by three Landscape Conservation Cooperatives and the Aleutian Pribilof Islands Association. Tribal leaders, resource managers, community planners, and scientists explored strategies to adapt to these unprecedented changes.The workshop series brought together 14 Organizing Partners 34 Tribes, 15 State & Federal Agencies, and a total of more than 200 participants to meet in four regional...
Categories: Data; Tags: Academics & scientific researchers, Aleutian Bering Sea Islands LCC data.gov, CLIMATE ADVISORIES, CLIMATE ADVISORIES, CLIMATE INDICATORS, All tags...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
We mosaicked twelve LandSat-8 OLI satellite images taken during the summer of 2014, which were used in an object based image analysis (OBIA) to classify the landscape. We mapped seventeen of the most dominant geomorphic land cover classes on the ACP: (1) Coastal saline waters, (2) Large lakes, (3) Medium lakes, (4) Small lakes, (5) Ponds, (6) Rivers, (7) Meadows, (8) Coalescent low-center polygons, (9) Low-center polygons, (10) Flat-center polygons, (11) High-center polygons, (12) Drained slope, (13) Sandy barrens, (14) Sand dunes, (15) Riparian shrub, (16) Ice, and (17) Urban (i.e. towns and roads). Mapped products were validated with an array of oblique aerial/ground based photography (Jorgenson et al., 2011)...
thumbnail
This pilot project has initiated a long-term integrated modeling project that aims todevelop a dynamically linked model framework focused on climate driven changes tovegetation, disturbance, hydrology, and permafrost, and their interactions and feedbacks.This pilot phase has developed a conceptual framework for linking current state-of-thesciencemodels of ecosystem processes in Alaska – ALFRESCO, TEM, GIPL-1 – and theprimary processes of vegetation, disturbance, hydrology, and permafrost that theysimulate. A framework that dynamically links these models has been defined and primaryinput datasets required by the models have been developed.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Bureau of Ocean Energy Management (BOEM) is supporting a field effort in support of a ShoreZone mapping project along the Chukchi and Beaufort coasts. Funds from the LCC will allow for the inclusion of three additional ShoreStations. Researchers will conduct ground surveys to get detailed physical and biological measurements throughout the various and often unique Chukchi and Beaufort coastal habitats. Sediment samples will be archived from each shore station for hydrocarbon analyses in the event of a local or regional oil spill. The Arctic ShoreZone Shore Stations will be added to the statewide database and made available online to the public NOAA website.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is...
The Adapt Alaska Collaborative grew out of a set of initiatives to promote climate resilience and adaptation in Alaska. On May 24 and 25, 2017 a group of participants (including representatives of Alaska regional, state and federal agencies and organizations) gathered at a work session to identify next steps to build on the momentum generated by these initiatives toward a more resilient Alaska. At the work session, three working groups formed around specific areas of effort, including a Planning Working Group with the task of identifying ways to streamline the many planning requirements associated with implementing climate resilience and adaptation strategies.The Adapt Alaska Planning Working Group looked at a range...
Categories: Data, Publication; Types: Citation; Tags: Academics & scientific researchers, Aleutian Bering Sea Islands LCC data.gov, CLIMATE ADVISORIES, CLIMATE ADVISORIES, CLIMATE INDICATORS, All tags...
thumbnail
The Integrated Ecosystem Model for Alaska project (IEM) uses down-scaled climate models as the drivers of ecosystem change to produce forecasts of future fire, vegetation, permafrost and hydrology regimes at a resolution of 1km. This effort is the first to model ecosystem change on a statewide scale, using climate change input as a major driving variable. The objectives of the IEM project are as follows; to better understand and predict effects of climate change and other stressors on landscape level physical and ecosystem processes, and to provide support for resource conservation planning.The IEM will provide resource managers with a decision support tool to visualize future landscapes in Alaska. Model outputs...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, DYNAMIC VEGETATION/ECOSYSTEM MODELS, DYNAMIC VEGETATION/ECOSYSTEM MODELS, Datasets/Database, Federal resource managers, All tags...
thumbnail
These raster datasets represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian...
Lack of complete snow cover for the past 3 winters in southwestern Alaska has forced agencies to postpone conducting moose surveys due to the likelihood of underestimating the population. For most regions of Alaska, the variation in moose sightability during suboptimal conditions has not yet been quantified. Because scientists are predicting less snowfall in this region over the long term, research was initiated to estimate sightability correction factors (SCFc) to apply to abundance estimates.
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represent simulated active layer thickness (ALT) in meters averaged across a decade. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.


map background search result map search result map Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada Alaskan Arctic Coastal Plain Polygonal Geomorphology Map ShoreZone Program on the North Slope of Alaska Simulated Active Layer Thickness Simulated Mean Annual Ground Temperature Potential Evapotranspiration: CCCMA - A1B Scenario Integrated Ecosystem Model Reports IEM-CSC Factsheet with Supplement, 2015 Stand Age Projections Historical Stand Age 1980-1989 Historical Stand Age 1870-1879 Historical Stand Age 1940-1949 Historical Stand Age 1900-1909 Historical Stand Age 1960-1969 Historical Stand Age 1890-1899 Historical Stand Age 1910-1919 ShoreZone Program on the North Slope of Alaska Alaskan Arctic Coastal Plain Polygonal Geomorphology Map Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada Simulated Active Layer Thickness Simulated Mean Annual Ground Temperature Potential Evapotranspiration: CCCMA - A1B Scenario Integrated Ecosystem Model Reports IEM-CSC Factsheet with Supplement, 2015 Stand Age Projections Historical Stand Age 1980-1989 Historical Stand Age 1870-1879 Historical Stand Age 1940-1949 Historical Stand Age 1900-1909 Historical Stand Age 1960-1969 Historical Stand Age 1890-1899 Historical Stand Age 1910-1919