Skip to main content
Advanced Search

Filters: Tags: Landscapes (X) > partyWithName: Alaska CSC (X)

28 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2016EF000479/full): Glacier hypsometry provides a first-order approach for assessing a glacier's response to climate forcings. We couple the Randolph Glacier Inventory to a suite of in situ observations and climate model output to examine potential change for the ∼27,000 glaciers in Alaska and northwest Canada through the end of the 21st century. By 2100, based on Representative Concentration Pathways (RCPs) 4.5–8.5 forcings, summer temperatures are predicted to increase between +2.1 and +4.6°C, while solid precipitation (snow) is predicted to decrease by −6 to −11%, despite a +9 to +21% increase in total precipitation. Snow is predicted to undergo a pronounced...
Abstract: P-band interferometric synthetic aperture radar (InSAR) data at 5 m resolution from Kahiltna Glacier, the largest glacier in the Alaska Range, Alaska, USA, show pronounced spatial variation in penetration depth, δ P. We obtained δ P by differencing X- and P-band digital elevation models. δ P varied significantly over the glacier, but it was possible to distinguish representative zones. In the accumulation area, δ P decreased with decreasing elevation from 18±3 m in the percolation zone to 10±4 m in the wet snow zone. In the central portion of the ablation area, a location free of debris and crevasses, we identified a zone of very high δ P (34±4 m) which decreased at lower elevations (23±3 m in bare ice...
Abstract (from: http://www.igsoc.org/journal/60/221/j13J176.html): The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. The RGI was created with limited resources in a short period. Priority was given to completeness of coverage, but a limited, uniform set of attributes is attached to each of the ~198 000 glaciers in its latest version, 3.2. Satellite imagery from 1999–2010 provided most of the outlines. Their total extent is estimated as 726 800 +/- 34 000 km2. The uncertainty, about +/-...
thumbnail
Water is a key ecosystem service that provides life to vegetation, animals, and human communities. The distribution and flow of water on a landscape influences many ecological functions, such as the distribution and health of vegetation and soil development and function. However, the future of many important water resources remains uncertain. Reduced snowfall and snowpack, earlier spring runoff, increased winter streamflow and flooding, and decreased summer streamflow have all been identified as potential impacts to water resources due to climate change. These factors all influence the water balance in the Pacific Coastal Temperate Rainforest (PCTR). Ensuring healthy flow and availability of water resources is...
thumbnail
Communities, resource managers, and decision makers in Arctic Alaska are in need of scientific information to base important decisions related to anticipating and adapting to changes in temperature and precipitation. Since its inception in 2011, the Alaska Climate Science Center (AK CSC) and its partners have produced a variety of scientific products and datasets aimed at supporting this need and increasing climate change resilience in the Arctic. However, much of the information related to these activities is dispersed across many technical publications, and is often not readily accessible to those outside the research community. In an effort to make this science more available and accessible, the AK CSC is working...
thumbnail
In Arctic and sub-Arctic regions, snow plays a crucial role in atmospheric and hydrologic systems and has a major influence on the health and function of regional ecosystems. Warming temperatures may have a significant impact on snow and may therefore affect the entire water cycle of the region. A decrease in precipitation in the form of snow, or “snow drought”, can manifest in several ways including changes to total snowfall amounts, snow accumulation, and the timing/length of the snow season. Understanding these changes is then critical for understanding and predicting a variety of climate impacts to wildlife and ecosystems. However, little research has been conducted to date to understand how this change may...
thumbnail
Alaska’s land, water, plants, wildlife, and seasons are undergoing a great upheaval, and its people, especially the communities living in remote villages are directly and severely impacted by these widespread environmental changes. These changes are not only widespread but also often so rapid that we cannot possibly have enough scientists and professionals on the ground to detect and predict these changes before their effects are obvious. Especially environmental changes occurring in and around the remote communities in Alaska are directly affecting the subsistence resources and practices, thus have the most impact on the socio-economic conditions of these communities. In order to detect, monitor, and forecast these...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0309170815002444): The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic...
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132652): Climate warming is likely to cause both indirect and direct impacts on the biophysical properties of stream ecosystems especially in regions that support societally important fish species such as Pacific salmon. We studied the seasonal variability and interaction between stream temperature and DO in a low-gradient, forested stream and a glacial-fed stream in coastal southeast Alaska to assess how these key physical parameters impact freshwater habitat quality for salmon. We also use multiple regression analysis to evaluate how discharge and air temperature influence the seasonal patterns in stream temperature and DO. Mean daily...
Abstract: We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of - 65 ± 11 Gt a - 1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of - 61 ± 11 Gt a - 1 from GRACE, which compares well with - 65 ± 12 Gt a - 1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June - August) air temperatures derived from both ground and...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2014JC010395/full): A study of the freshwater discharge into the Gulf of Alaska (GOA) has been carried out. Using available streamgage data, regression equations were developed for monthly flows. These equations express discharge as a function of basin physical characteristics such as area, mean elevation, and land cover, and of basin meteorological characteristics such as temperature, precipitation, and accumulated water year precipitation. To provide the necessary input meteorological data, temperature and precipitation data for a 40 year hind-cast period were developed on high-spatial-resolution grids using weather station data, PRISM climatologies, and...
thumbnail
Snow is extremely important to a wide range of natural processes in Alaska. Snow cover helps regulate the earth’s temperature and stores water on the landscape. As it melts, snow hydrates the soil and replenishes the freshwater supplies of streams and lakes, providing water for vegetation, wildlife, and human activities such as agriculture and electricity generation. Understanding present and future snow conditions under climate change is critical for managing Alaska’s natural resources, yet many scientists, land managers, and policymakers lack this information at useful scales. Hence, the goal of this project was to produce an advanced snow modeling system for part of the Arctic that predicts a variety of factors...
Abstract (from http://link.springer.com/article/10.1007/s10021-014-9777-1): The Coast Mountains of southeast Alaska are currently experiencing some of the highest rates of glacier volume loss on Earth, with unknown implications for proglacial stream biogeochemistry. We analyzed streamwater for δ18O and dissolved organic matter (DOM) biogeochemistry (concentration, δ13C-dissolved organic carbon (DOC), and fluorescence characterization) during the 2012 glacial runoff season from three coastal watersheds in southeast Alaska that ranged in glacier coverage from 0 to 49% and a glacier outflow stream. Our goal was to assess how DOM biogeochemistry may change as receding glaciers are replaced by forests and glaciers contribute...
This publication is a product from the 2011 Alaska CSC supported project "Assessing the Sensitivity of Alaska’s Coastal Rainforest Ecosystems to Changes in Glacier Runoff". Abstract from paper: Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015WR018457/full): A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and glacier volume loss (GVL). Hydrologic processes during the period 1980–2014 were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high-resolution (1 km horizontal grid; daily time step). Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis...
thumbnail
Permanently frozen ground, known as permafrost, is a critical feature of the Arctic landscape. As temperatures warm, permafrost is thawing, with potentially adverse impacts to infrastructure, communities, and the structure and function of Arctic ecosystems. However, the processes leading to changes in permafrost are not well understood, and there is a need to better understand the vulnerability of permafrost to thaw. Addressing these gaps in information regarding permafrost characteristics and dynamics, and what these changes will mean for human communities and ecosystems, will support management and planning efforts. This project seeks to address these gaps through several mechanisms. First researchers have synthesized...
thumbnail
Permafrost is a layer of perennially frozen soil that primarily exists in and around the Arctic and Antarctic regions of the world. While a shallow near-surface soil layer (called active layer) thaws during the summer and re-freezes in the winter, the underlying permafrost remains perennially frozen, often underlying buildings, roads, and other infrastructure. As warmer temperatures become more common, thawing of permafrost could have major consequences for Alaska. Where thawing has already occurred, dramatic changes in ecosystems and existing infrastructure are evident. For example, thawing permafrost along the ocean shore and riverbanks in Northern Alaska is causing substantial coastal erosion and is impacting...
thumbnail
In coastal Alaska, changes in snow, ice, and extreme weather events threaten human communities, critical infrastructure, valuable natural resources, and traditional, subsistence hunting and fishing lifestyles. Understanding how changing climate conditions impact Alaska’s coastal ecosystems, and how these changes may be tied to the ability of coastal communities to adapt to changing conditions, has been identified as a priority question in the state. In order to identify knowledge gaps and resource needs related to adaptation and resilience in coastal Alaska, the Alaska Climate Science Center partnered with the U.S. Fish and Wildlife Service, the Aleutian Pribilof Islands Association, and a dozen other entities...
During the summer in the northeast Pacific Ocean, the Alaska Coastal Current sweeps water with temperatures in excess of 12 °C past the mouths of glacierized fjords and bays. The extent to which these warm waters affect the mass balance of Alaskan tidewater glaciers is uncertain. Here we report hydrographic measurements made within Icy Bay, Alaska, and calculate rates of submarine melt at Yahtse Glacier, a tidewater glacier terminating in Icy Bay. We find strongly stratified water properties consistent with estuarine circulation and evidence that warm Gulf of Alaska water reaches the head of 40 km - long Icy Bay, largely unaltered. A 10 - 20 m layer of cold, fresh, glacially-modified water overlies warm, saline...


map background search result map search result map Assessing Permafrost Changes and Related Impacts on Alaskan Infrastructure and Communities Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Modeling and Predicting Future Changes in Snowfall and Snow Cover in Alaska A Synthesis of Climate Change Impacts and Adaptation in Arctic Alaska Snow Drought: Recognizing and Understanding its Impacts in Alaska Permafrost Change and Impacts on Infrastructure and Resources in Alaska: A Synthesis of Past Work Promoting Coastal Resilience and Adaptation in Alaska: Aleutian and Bering Sea Islands Region The Arctic in the Classroom: Study of Landscape Change in Remote Communities of Alaska: A K-12 Citizen Science Initiative toward Sustained Arctic Observations Assessing Permafrost Changes and Related Impacts on Alaskan Infrastructure and Communities Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Modeling and Predicting Future Changes in Snowfall and Snow Cover in Alaska A Synthesis of Climate Change Impacts and Adaptation in Arctic Alaska Snow Drought: Recognizing and Understanding its Impacts in Alaska The Arctic in the Classroom: Study of Landscape Change in Remote Communities of Alaska: A K-12 Citizen Science Initiative toward Sustained Arctic Observations Promoting Coastal Resilience and Adaptation in Alaska: Aleutian and Bering Sea Islands Region Permafrost Change and Impacts on Infrastructure and Resources in Alaska: A Synthesis of Past Work