Skip to main content
Advanced Search

Filters: Tags: Michigan (X) > partyWithName: Samantha K Oliver (X)

19 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Observed water temperatures from 1980-2019 were compiled for 2,332 lakes in the US. These data were used as training, test, and error-estimation data for process-guided deep learning models and the evaluation of process-based models. The data are formatted as a single csv (comma separated values) file with attributes corresponding to the unique combination of lake identifier, time, and depth. Data came from a variety of sources, including the Water Quality Portal, the North Temperate Lakes Long-Term Ecological Research Project, and digitized temperature records from the MN Department of Natural Resources. This dataset is part of a larger data release of lake temperature model inputs and outputs for these same lakes...
thumbnail
This data release component contains mean daily stream water temperature observations, retrieved from the USGS National Water Information System (NWIS) and used to train and validate all temperature models. The model training period was from 2010-10-01 to 2014-09-30, and the test period was from 2014-10-01 to 2016-09-30.
Categories: Data; Tags: AL, AR, AZ, Alabama, Arizona, All tags...
thumbnail
This dataset provides shapefile outlines of the 2,332 lakes that had temperature modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). A csv file of lake metadata is included, which includes lake metadata and all features that were considered for the meta transfer model (not all meta features were used). This dataset is part of a larger data release of lake temperature model inputs and outputs for 2,332 lakes in the U.S. (https://doi.org/10.5066/P9I00WFR).
This data release component contains water temperature predictions in 118 river catchments across the U.S. Predictions are from the four models described by Rahmani et al. (2020): locally-fitted linear regression, LSTM-noQ, LSTM-obsQ, and LSTM-simQ.
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of South Dakota, North Dakota, Minnesota, Wisconsin, and Michigan. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Process-Guided Deep Learning (PGDL) models were deep learning models with an added physical constraint for energy conservation as a loss term. These models were pre-trained with uncalibrated Process-Based model outputs (PB0) before training...
thumbnail
This data release provides all data and code used in Rahmani et al. (2021b) to model stream temperature and assess results. Briefly, we modeled stream temperature at sites across the continental United States using deep learning methods. The associated manuscript explores the prediction challenges posed by reservoirs, the value of additional training sites when predicting in gaged vs ungaged sites, and the value of an ensemble of attribute subsets in improving prediction accuracy. The data are organized into these child items: Site Information - Attributes and spatial information about the monitoring sites and basins in this study Observations - Water temperature observations for the sites used in this study Model...
Tags: AL, AR, AZ, Alabama, Arizona, All tags...
thumbnail
This dataset provides model specifications used to estimate water temperature from a process-based model (Hipsey et al. 2019). The format is a single JSON file indexed for each lake based on the "site_id". This dataset is part of a larger data release of lake temperature model inputs and outputs for 2,332 lakes in the U.S. (https://doi.org/10.5066/P9I00WFR).
This data release component contains evaluation metrics used to assess the predictive performance of each stream temperature model. For further description, see the metric calculations in the supplement of Rahmani et al. (2020), equations S1-S7.
This data release component contains mean daily stream water temperature observations, retrieved from the USGS National Water Information System (NWIS) and used to train and validate all temperature models. The model training period was from 2010-10-01 to 2014-09-30, and the test period was from 2014-10-01 to 2016-09-30.
thumbnail
This data release component contains shapefiles of river basin polygons and monitoring site locations coincident with the outlets of those basins. A table of basin attributes is also supplied. Attributes, observations, and weather forcing data for these basins were used to train and test the stream temperature prediction models of Rahmani et al. (2021b).<\p>
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: AL, AR, AZ, Alabama, Arizona, All tags...
This data release provides all data and code used in Rahmani et al. (2020) to model stream temperature and assess results. Briefly, we used a subset of the USGS GAGES-II dataset as a test case for temperature prediction using deep learning methods. The associated manuscript explores the value of including stream discharge as a predictor in the temperature models, including the value of predicted discharge from a separate model when no discharge measurements are available. The data are organized into these items: Spatial Information - Locations of the 118 monitoring sites used in this study Observations - Water temperature observations for the 118 sites used in this study Model Inputs - Model inputs, including basin...
thumbnail
Climate change and land use change have been shown to influence lake temperatures and water clarity in different ways. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we focused on improving prediction accuracy for daily water temperature profiles in 2,332 lakes during 1980-2019. The data are organized into these items: This research was funded by the Department of the Interior Northeast and North Central Climate Adaptation Science Centers, a Midwest Glacial Lakes Fish Habitat Partnership grant through F&WS Access to computing facilities was provided by USGS Advanced Research Computing, USGS Yeti Supercomputer (https://doi.org/10.5066/F7D798MJ)....


    map background search result map search result map Data release: Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 1 Lake information for 2,332 lakes Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 2 Water temperature observations Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 3 Model configurations Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 5 Model predictions Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 6 model evaluation Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 1 Spatial information Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 2 Observations Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 4 Models Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 5 Model predictions Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 6 Model evaluation Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 1 Site Information: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 2 Observations: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 3 Model Forcings: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 4 Model Code: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 5 Model Predictions: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins Data release: Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 2 Water temperature observations Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 3 Model configurations Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 5 Model predictions Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 6 model evaluation Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 1 Lake information for 2,332 lakes Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 1 Spatial information Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 2 Observations Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 4 Models Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 5 Model predictions Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 6 Model evaluation Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 2 Observations: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 3 Model Forcings: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 4 Model Code: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 5 Model Predictions: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins 1 Site Information: Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins