Skip to main content
Advanced Search

Filters: Tags: Northeast CASC (X) > Types: OGC WFS Layer (X) > partyWithName: Northeast CSC (X)

13 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there are key uncertainties that impede decision making....
thumbnail
Forests in the eastern United States are changing in response to ecological succession, tree harvest, and other disturbances and climate change has the potential to further change these forests. We predicted the distribution and abundance of common tree species across portions of the eastern U.S. under alternative climate scenarios that varied in the amount of warming by the end of the century from 1.1 to 4.2 degrees celsius. We used a forest landscape change model to forecast changes in tree abundances and distribution in the North Atlantic region of the U.S. while accounting for climate change, succession, and harvest. We then considered a broader region of the U.S. and combined our results with results from previous...
thumbnail
Prairie ecosystems and the grassland birds that rely on them for habitat may be particularly vulnerable to rapid changes in climate. Extensive portions of prairie have already been lost due to agriculture and urbanization, and as a result grassland birds have declined more than any other bird group in the last four decades. Now, climate change could exacerbate existing threats to these birds as temperatures in certain prairie ecosystems are expected to rise and extreme weather events, such as drought, could become more common. The goal of this project was to develop a framework to identify demographic sensitivities and assess the vulnerability of grassland bird species to future climate change. To do so, the researchers...
thumbnail
Climate change is expected to alter stream temperature and flow regimes over the coming decades, and in turn influence distributions of aquatic species in those freshwater ecosystems. To better anticipate these changes, there is a need to compile both short- and long-term stream temperature data for managers to gain an understanding of baseline conditions, historic trends, and future projections. Unfortunately, many agencies lack sufficient resources to compile, conduct quality assurance and control, and make accessible stream temperature data collected through routine monitoring. Yet, pooled data from many sources, even if temporally and spatially inconsistent, can have great value both in the realm of stream temperature...
thumbnail
A number of large-scale mapping projects have been completed in the U.S., and several cover all or some parts of the footprint of the Northeast Climate Science Center (NE CSC). These include maps by the Southeast GAP Analysis (SEGAP) program, the national LANDFIRE program, NatureServe, and The Nature Conservancy. These mapping projects represent a major step forward in describing the current extent of ecosystems on the landscape, and provide resource management agencies and organizations with unprecedented access to spatial information on these systems. In a number of cases, the ranges of these maps overlap. As a result, staff of resource management agencies and organizations are faced with trying to determine how...
thumbnail
Spruce-fir forests and associated bird species are recognized as some of the most vulnerable ecosystems and species to the impacts of climate change. This work capitalized on a rich suite of long-term data from these ecosystems to document recent trends in these forests and their associated bird species and developed tools for predicting their future abundance under climate change. Findings from this work indicate declining trends in the abundance of spruce-fir obligate birds, including Bicknell’s Thrush, across the Lake States and New England. In contrast, montane spruce-fir forests in the White and Green Mountains of New England exhibited patterns of increasing abundance, potentially due to their recovery from...
thumbnail
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport...
thumbnail
The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake. Although some variability in fish catches is expected across factors such as location and season, we know less about how large-scale disturbances like climate change will influence population variability. The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non-native species, and shifting climatic patterns. In this project, we analyzed established long-term data about...
thumbnail
The Northeast United States and Atlantic Canada share many of the same types of forests, wetlands, and natural communities, and from a wildlife perspective the region is one contiguous forest. However, resources are classified and mapped differently on the two sides of the border, creating challenges for habitat evaluation, species modeling, and predicting the effects of climate change. To remedy this, ecologists from The Nature Conservancy collaborated with a committee of scientists from various Canadian institutions to produce the first international map of terrestrial habitats for northeast North America. The project used extensive spatial data on geology, soils, landforms, wetlands, elevation and climate. Additionally,...
thumbnail
Building on a strong tradition of collaboration, the College of Menominee Nation Sustainable Development Institute (CMN SDI) coordinated a second offering of its Shifting Seasons Summit to bring scientists, practitioners, indigenous people, and students together around the issue of climate change. The summit was developed to specifically unite Northeast Climate Science Center (NE CSC) researchers with American Indian/indigenous practitioners and scientists to better communicate the resources available through the NE CSC, to build awareness of the overall mission of the CSC network, and to provide participants an opportunity to network and learn more about tribal cultural, social, environmental, and economic issues...
thumbnail
Human impacts occurring throughout the DOI Northeast Climate Science Center, including urbanization, agriculture, and dams, have multiple effects on streams in the region which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project met that need by integrating results of a current condition assessment of stream habitats based on fish response to human land use, water quality impairment,...
thumbnail
In 2010, 39 percent of the U.S.population lived near the coast. This population is expected to increase by 8 percent from 2010 to 2020. Coastal regions are also home to species and habitats that provide critical services to humans, such as wetlands that buffer coasts from storms. Therefore, sea-level rise and the associated changes in coastlines challenge both human communities and ecosystems. Understanding which coastal lands will be vulnerable to sea-level rise is critical for policy makers, land-use planners, and coastal residents. Focusing on the coastal region from Virginia to Maine, researchers examined a range of different possible sea-level rise scenarios, combined with information on features of the coastal...
thumbnail
This study set out to answer the question: “What data and modeling frameworks are needed to provide scientists reliable, climate-informed, water temperature estimates for freshwater ecosystems that can assist watershed management decision making?” To accomplish this, the study gathered existing stream temperature data, identified data gaps, deployed stream temperature monitoring devices, and developed and tested a stream temperature model that could be regionalized across the Northeast domain. We partnered with another funded project team, led by Jana Stewart at WI USGS to collect data from over 10,000 locations across the climate science center domain. This collection effort aided in identifying data gaps where...


    map background search result map search result map Understanding the Varying Responses of Fish Populations to Future Climate Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes Developing a Comprehensive Terrestrial Habitat Map for the Northeastern U.S. and Atlantic Canada to Inform Planning Decisions Bringing People, Data, and Models Together – Addressing Impacts of Climate Change on Stream Temperature Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Evaluating Sea-level Rise Impacts in the Northeastern U.S. Assessing the Vulnerability of Grassland Bird Populations to Climate Change Modeling Effects of Climate Change on Spruce-Fir Forest Ecosystems and Associated Priority Bird Populations FishTail: A Tool to Inform Conservation of Stream Fish Habitats in the Northeast Changes in Forested Landscapes of the Northeastern U.S. Under Future Climate Scenarios Projecting the Future of Headwater Streams to Inform Management Decisions Building Tribal Engagement Through the Shifting Seasons Summit Modeling Effects of Climate Change on Spruce-Fir Forest Ecosystems and Associated Priority Bird Populations Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes Developing a Comprehensive Terrestrial Habitat Map for the Northeastern U.S. and Atlantic Canada to Inform Planning Decisions Evaluating Sea-level Rise Impacts in the Northeastern U.S. Changes in Forested Landscapes of the Northeastern U.S. Under Future Climate Scenarios Understanding the Varying Responses of Fish Populations to Future Climate Bringing People, Data, and Models Together – Addressing Impacts of Climate Change on Stream Temperature Projecting the Future of Headwater Streams to Inform Management Decisions FishTail: A Tool to Inform Conservation of Stream Fish Habitats in the Northeast NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning Assessing the Vulnerability of Grassland Bird Populations to Climate Change