Skip to main content
Advanced Search

Filters: Tags: Wetlands (X) > Types: OGC WFS Layer (X)

446 results (18ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
Introduction Recent trends analysis examining the effectiveness of tidal wetland regulations and the regulatory program of the New York State Department of Environmental Conservation (NYSDEC) revealed that the regulations and regulatory program were highly effective in stemming the historic "fill and build" activities. However, the trends also revealed that tidal wetlands—specifically, low marshes—were disappearing. To help determine the cause(s) of this loss, the NYSDEC, in collaboration with Stony Brook University's School of Marine and Atmospheric Sciences (SoMAS) and the U.S. Geological Survey (USGS), established a monitoring program in 2008 that has been conducted on and in the tidal wetlands of East Creek,...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. Area coverage for this data set is the Upper Mississippi River between Minneapolis, MN and Cairo, IL, and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS).
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
As the impacts of climate change amplify, understanding the consequences for wetlands will be critical for their sustainable management and conservation, particularly in arid regions such as the Columbia Plateau. The depressional wetlands in this region (wetlands located in topographic depressions where water can accumulate) are an important source of surface water during the summer months. However, their health depends directly on precipitation and evaporation, making them susceptible to changes in temperature and precipitation. Yet few tools for monitoring water movement patterns (hydrology) in and out of these landscapes currently exist, hindering efforts to model how they are changing. This project provided...
thumbnail
This project evaluated the potential impacts of storm surges and relative sea level rise on nesting geese and eider species that commonly breed on the Yukon-Kuskokwim Delta (Y-K Delta). Habitat suitability maps for breeding waterbirds were developed to identify current waterbird breeding habitat and distributions. Short-term climate change impacts were assessed by comparing nest densities in relation to magnitude of storms that occurred in the prior fall from 2000-2013. Additionally, nest densities were modeled using random forests in relation to the time-integrated flood index (e.g., a storm specific measure accounting for both water depth and duration of flooding) for four modeled storms (2005, 2006, 2009, and...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: BIRDS, BIRDS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, DELTAS, All tags...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
This pilot project has initiated a long-term integrated modeling project that aims todevelop a dynamically linked model framework focused on climate driven changes tovegetation, disturbance, hydrology, and permafrost, and their interactions and feedbacks.This pilot phase has developed a conceptual framework for linking current state-of-thesciencemodels of ecosystem processes in Alaska – ALFRESCO, TEM, GIPL-1 – and theprimary processes of vegetation, disturbance, hydrology, and permafrost that theysimulate. A framework that dynamically links these models has been defined and primaryinput datasets required by the models have been developed.


map background search result map search result map Imagery Monitoring Tidal Water Elevation and Water Quality to Assess Tidal Wetland Loss in Four Embayments of Long Island Sound, New York Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 08 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Open River 2 Cottonwood Lake Study Area-Wetland Vegetation Zones-1986 Cottonwood Lake Study Area-Wetland Vegetation Zones-1990 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 05a UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 20 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Illinois River Lockport Pool UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 12 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 15 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Illinois River Starved Rock Pool UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 01 Alaska Integrated Ecosystem Model Pilot Year Final Report Part I Summary: Predicting waterbird nest distributions Historical Stand Age 1870-1879 Historical Stand Age 1900-1909 UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 13 UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 11 Cottonwood Lake Study Area-Wetland Vegetation Zones-1986 Cottonwood Lake Study Area-Wetland Vegetation Zones-1990 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 01 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 15 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 05a UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 12 UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 11 UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 13 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Illinois River Lockport Pool UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Open River 2 Part I Summary: Predicting waterbird nest distributions Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Imagery Alaska Integrated Ecosystem Model Pilot Year Final Report Historical Stand Age 1870-1879 Historical Stand Age 1900-1909