Skip to main content
Advanced Search

Filters: Tags: elevation (X) > Date Range: {"choice":"year"} (X) > Categories: Data (X) > Types: Raster (X)

20 results (24ms)   

View Results as: JSON ATOM CSV
thumbnail
This bathymetric dataset provides an update to the stage-storage relation for Quail Lake (reservoir) located in the El Dorado National Forest, Calif. Bathymetric data was collected using a multibeam echo sounder to provide near-complete coverage and was merged with USGS 3DEP lidar to compute a DEM of the lake and near shore. The DEM was used to computed storage and surface area for a range of stage elevations. Results show that the spillway elevation was 6799.3 feet (NAVD88) and the crest elevation was 6802.5 feet (NAVD88). At the spillway elevation the storage was 141.74 ac-ft with a surface area of 14.20 ac. At the crest elevation the storage was 190.05 ac-ft with a surface area of 15.89 ac.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Carlisle 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
This bathymetric dataset provides an update to the stage-storage relation for Little Rock Reservoir located in the Angeles National Forest, California. Bathymetric data was collected using a multibeam echo sounder to provide near-complete coverage and was merged with U.S. Geological Survey 3D Elevation Project lidar to compute a digital elevation model (DEM) of the reservoir and surrounding watershed. The DEM was used to computed storage and surface area for a range of stage elevations. Results show that the mean cross-spillway elevation was 3273 feet above the North American Vertical Datum 1988 (NAVD88) and the mean dam crest elevation was 3277 feet (NAVD88). At the spillway elevation the storage was 3335.8 acre-feet...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Roanoke 30 x 60 minute quadrangle in Virginia. It also covers a part of the Appalachian Basin Province. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2017 and 2021 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data spatial reference is the WGS 1984 geographic coordinate system. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief...
thumbnail
These data are digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, near the Superior entry, Duluth, Minnesota. The DEMs have 1 meter (m; 3.28084 ft) and/or 10 m (32.8084 ft) cell size and was created from a LAS dataset of terrestrial light detection and ranging (LiDAR) data representing the beach topography and sonar data representing the bathymetry for an approximate 1.78 square kilometer survey area. Average point spacing of the LAS files in the dataset are as follows: lidar, 0.055 meters (m); multibeam sonar, 0.511 m; single-beam sonar, 1.687 m. Lidar data were collected November 01, 2022 using a boat mounted Velodyne VLP-16 unit and methodology...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Radford 30 x 60 minute quadrangle in Virginia. It also covers a part of the Appalachian Basin Province. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2018 and 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Beckley 30 x 60 minute quadrangle in West Virginia, Virginia and Kentucky. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2022. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
These data are digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, near the Superior entry, Duluth, Minnesota. The DEMs have 1 meter (m) and/or 10 m cell size and was created from a LAS dataset of terrestrial light detection and ranging (LiDAR) data representing the beach topography and sonar data representing the bathymetry for an approximate 2.15 square kilometer survey area. Average point spacing of the LAS files in the dataset are as follows: Lidar, 0.086 m; multi-beam sonar, 0.512 m; single-beam sonar, 1.919 m. Lidar data were collected September 07, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by...
thumbnail
This digital terrain model represents historical elevations along the valley of the North Fork Toutle River upstream of its confluence with the Green River in Cowlitz and Skamania Counties, Washington. Most elevations were derived from U.S. Geological Survey 1:62,500 scale topographic quadrangle maps published from 1953 to 1958 that were derived from aerial photographs taken in 1951 and 1952. Elevations representing the bed of Spirit Lake, at the head of the valley, were derived from a bathymetric map based on survey data from 1974. Elevations are in units of meters and have been adjusted to the North American Vertical Datum of 1988.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Pittsburgh East 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution Lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2021 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
This imagery dataset consists of 3 meter resolution, Lidar-derived imagery of the Winchester 30 x 60 minute quadrangle in northern Virginia, West Virginia, and western Maryland. The source data used to construct this imagery consists of 1 meter resolution lidar-derived digital elevation models (DEM). The lidar source data were compiled from different acquisitions published between 2011 and 2019. The data were processed using geographic information systems (GIS) software. The data is projected in North America Datum (NAD) UTM Zone 17 North. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Lewisburg 30 x 60 minute quadrangle in Virginia and West Virginia. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2021. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Johnstown 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published in 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the likelihood of coastal change along the U.S coastline within the coming decade. The pilot study, conducted in the Northeastern U.S. (Maine to Virginia), is comprised of datasets derived from a variety of federal,...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Acadia National Park, ArcGIS Pro, Arcpy, Autoclassification, Automation, All tags...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Cumberland 30 x 60 minute quadrangle in Pennsylvania, West Virginia and Maryland. The source data used to construct this imagery consists of 1-meter lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2023. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
These data are digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Duluth Entry, Duluth, Minnesota. A LAS dataset was used to create DEMs of 10 meter (m; 32.8084 feet) and 1 m (3.28084 feet) resolution, covering the approximately 1.75 square kilometer surveyed area. Average point spacing of the LAS files in the dataset are as follows: lidar, 0.094 meters (m); multibeam sonar, 0.501 m; single-beam sonar, 1.876 m. Lidar data were collected August 22, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected August 22-23, 2022 using a Norbit integrated...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Hagerstown 30 x 60 minute quadrangle in Pennsylvania, Maryland, and part of West Virginia. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2016 and 2023. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation. First release: 2012 Revised: February...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Bluefield 30 x 60 minute quadrangle in West Virginia and Virginia. The source data used to construct this imagery consists of 1-meter lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2022. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
The U.S. Geological Survey (USGS) in cooperation with the Harris‐Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District produced this dataset of groundwater‐level altitudes and groundwater‐level altitude changes in the Chicot and Evangeline aquifers (undifferentiated), and Jasper aquifer in the greater Houston area, Texas. This dataset shows current‐year (2023) groundwater‐level altitudes for each aquifer as well as 1–year (2022–23), and 5‐year (2018–23) groundwater‐level changes for each aquifer, long‐term (1990–2023 and 1977–2023) groundwater‐level changes for the Chicot and Evangeline aquifers...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Marlinton 30 x 60 minute quadrangle in West Virginia. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2021. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.


    map background search result map search result map Enhanced Terrain Imagery of the Winchester 30 x 60 Minute Quadrangle from Lidar-derived Elevation Models at 3 Meter Resolution Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Perpetual Hazards Enhanced Terrain Imagery of the Hagerstown 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution (ver. 1.1, February 2024) Bathymetric survey and stage-storage assessment of Quail Lake, Calif., collected in 2022 Little Rock Reservoir, California, 2022 bathymetric survey and stage-storage computations Digital terrain model of upper North Fork Toutle River valley, Washington, derived from historical topographic maps Groundwater-Level Altitudes and Long-Term Groundwater-Level Changes in the Chicot and Evangeline (Undifferentiated) and Jasper Aquifers, Greater Houston area, Texas, 2023 Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Johnstown 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Pittsburgh East 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Radford 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Roanoke 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, August 2022 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, October-November 2022 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Superior Entry, Duluth, MN, September 2022 Enhanced Terrain Imagery of the Lewisburg 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Cumberland 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Marlinton 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Bluefield 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Beckley 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Bathymetric survey and stage-storage assessment of Quail Lake, Calif., collected in 2022 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, October-November 2022 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, August 2022 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Superior Entry, Duluth, MN, September 2022 Little Rock Reservoir, California, 2022 bathymetric survey and stage-storage computations Digital terrain model of upper North Fork Toutle River valley, Washington, derived from historical topographic maps Enhanced Terrain Imagery of the Hagerstown 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution (ver. 1.1, February 2024) Enhanced Terrain Imagery of the Cumberland 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Marlinton 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Bluefield 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Radford 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Roanoke 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Pittsburgh East 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Johnstown 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Lewisburg 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Beckley 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Winchester 30 x 60 Minute Quadrangle from Lidar-derived Elevation Models at 3 Meter Resolution Groundwater-Level Altitudes and Long-Term Groundwater-Level Changes in the Chicot and Evangeline (Undifferentiated) and Jasper Aquifers, Greater Houston area, Texas, 2023 Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Perpetual Hazards