Skip to main content
Advanced Search

Filters: Tags: geography (X) > Types: GeoTIFF (X)

85 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This metadata record describes the 30 year (1990-2019) annual average difference between precipitation potential evapotranspiration in millimeters in geotiff format. The source data is based on the ClimGrid netcdf data for precipitation and temperature (Wieczorek and others, 2022). Units are millimeters.
thumbnail
These data were compiled so that annual wildfire could be modelled across the sagebrush region in the western United States. Our goal was to understand how wildfire probability relates to climate and fuel conditions across the entire sagebrush region. To do this we developed a statistical model that represents the relationship between annual wildfire probability and a small number of climate and fuel variables. Specifically, created predictions of wildfire probability using a biologically plausible logistic regression model that related wildfire probability to mean temperature, annual precipitation, the proportion summer precipitation (PSP), and aboveground biomass of annual herbaceous plants and perennial herbaceous...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Arizona, Botany, California, Climatology, Colorado, All tags...
thumbnail
The Louisiana State Legislature created the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed pursuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the Barataria Basin Landbridge Shoreline Protection, Phases 1, 2, and 3 (BA-27) project for 2018. This data is used as a basemap land-water classification. It also serves as a visual tool for project managers to help them identify any obvious...
thumbnail
The Louisiana State Legislature created the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed pursuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the West Bay Sediment Diversion (MR-03) project for 2021. This data is used as a basemap land-water classification. It also serves as a visual tool for project managers to help them identify any obvious problems or land loss within their project...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Wilmington 30 x 60 minute quadrangle in parts of Pennsylvania, Maryland, Delaware, and New Jersey. It also covers part of the Delaware River Basin. The source data used to construct this imagery consists of 1-meter and 3-meter resolution Lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2013 and 2018 from the U.S. Department of Agriculture (USDA) and the US Geological Survey (USGS). The data were processed using geographic information systems (GIS) software. The data are projected in North America Datum (NAD) UTM Zone 18 North. This representation illustrates...
thumbnail
This dataset provides a near-real-time estimate of 2019 herbaceous annual cover with an emphasis on annual grass (Boyte and Wylie. 2016. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015. Rangelands 38:278-284.) This estimate was based on remotely sensed enhanced Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) data gathered through June 24, 2019. This is the second iteration of an early estimate of herbaceous annual cover for 2019 over the same geographic area. The previous dataset used eMODIS NDVI data gathered through April 28, 2019 (https://doi.org/10.5066/P9ZEK5M1). The pixel values for this most recent estimate ranged from 0 to100%...
thumbnail
The Louisiana State Legislature created the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed pursuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the North Lake Mechant Landbridge Restoration (TE-44) project for 2021. This data is used as a basemap land-water classification. It also serves as a visual tool for project managers to help them identify any obvious problems or land loss within...
thumbnail
The Louisiana State Legislature created the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed pursuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the Cole's Bayou Marsh Restoration (TV-63) project for 2018. This data is used as a basemap land-water classification. It also serves as a visual tool for project managers to help them identify any obvious problems or land loss within their...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Cumberland 30 x 60 minute quadrangle in Pennsylvania, West Virginia and Maryland. The source data used to construct this imagery consists of 1-meter lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2023. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
The Louisiana State Legislature created Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed pursuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the Lake Chapeau Sediment Input and Hydrologic Restoration, Point Au Fer Island (TE-26) project for 2016. This data is used as a basemap land/water classification. It also serves as a visual tool for project managers to help them identify any obvious...
thumbnail
The Louisiana State Legislature created the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed pursuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the Sabine Refuge Marsh Creation (CS-28) project for 2015. This data is used as a basemap land-water classification. It also serves as a visual tool for project managers to help them identify any obvious problems or land loss within their project...


map background search result map search result map Lake Chapeau sediment input and hydrologic restoration, Point Au Fer Island (TE-26): 2016 land-water classification DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Cedar Island, VA, 2013–2014 DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Fire Island, NY, 2010–2011 DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Rockaway Peninsula, NY, 2012 DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Rockaway Peninsula, NY, 2013–2014 Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2019 Sabine Refuge Marsh Creation (CS-28): 2015 land-water classification DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parker River, MA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Hatteras, NC, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Rhode Island National Wildlife Refuge, RI, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Fisherman Island, VA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parramore Island, VA, 2014 Barataria Basin Landbridge Shoreline Protection, Phases 1, 2, and 3 (BA-27): 2018 land-water classification Enhanced Terrain Imagery of the Wilmington 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Cole's Bayou Marsh Restoration (TV-63): 2018 land-water classification 30 Year (1990 - 2019) Annual Average Difference between Precipitation Potential Evapotranspiration West Bay Sediment Diversion (MR-03): 2021 land-water classification North Lake Mechant Landbridge Restoration (TE-44): 2021 land-water classification Observed wildfire frequency, modelled wildfire probability, climate, and fine fuels across the big sagebrush region in the western United States Enhanced Terrain Imagery of the Cumberland 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Fisherman Island, VA, 2014 Cole's Bayou Marsh Restoration (TV-63): 2018 land-water classification Sabine Refuge Marsh Creation (CS-28): 2015 land-water classification North Lake Mechant Landbridge Restoration (TE-44): 2021 land-water classification DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parramore Island, VA, 2014 Barataria Basin Landbridge Shoreline Protection, Phases 1, 2, and 3 (BA-27): 2018 land-water classification West Bay Sediment Diversion (MR-03): 2021 land-water classification DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Fire Island, NY, 2010–2011 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Rhode Island National Wildlife Refuge, RI, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Hatteras, NC, 2014 Enhanced Terrain Imagery of the Cumberland 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Wilmington 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2019 Observed wildfire frequency, modelled wildfire probability, climate, and fine fuels across the big sagebrush region in the western United States 30 Year (1990 - 2019) Annual Average Difference between Precipitation Potential Evapotranspiration