Skip to main content
Advanced Search

Filters: Tags: geoscientificInformation (X) > Extensions: Raster (X)

500 results (39ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
The U.S. Geological Survey (USGS), in cooperation with the Puerto Rico Environmental Quality Board, has compiled a series of geospatial datasets for Puerto Rico to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). These geospatial datasets, along with basin characteristics datasets for Puerto Rico published as a separate USGS data release (https://doi.org/10.5066/P9HK9SSQ), were used to delineate watersheds and develop the peak-flow and low-flow regression equations used by StreamStats. The geospatial dataset described herein are the sink point grid rasters at a 10-m resolution, which are raster representations of the sink points. The value of 1 is assigned to pixels that are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria are met. This dataset contains results from a study examining the potential impacts of projected climatic change on prescribed burning in the southeastern United States. A set of burn window criteria (suitable weather conditions within which burning may occur based on maximum daily temperature, daily average relative humidity, and daily average wind speed), were applied to projections from an ensemble of Global Climate Models (GCM) under two greenhouse gas emission scenarios, as well as past observations for comparison. Data are...
thumbnail
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids depending on mapping system and processing method. This metadata file refers to the data included in "BackscatterB_EM300_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., Finlayson, D.P., and Krigsman, L.M., (G.R. Cochrane and S.A. Cochran, eds.), 2016, California...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Acoustic Reflectivity, Aptos, Backscatter, Bathymetry, CMHRP, All tags...


map background search result map search result map BackscatterB [EM300]--Offshore Aptos, California Precipitation (Mean: Annual) - 2070-2100 - RCP4.5 - Mean Precipitation (Mean: Annual) - 2070-2100 - RCP8.5 - Max Temperature (Mean: Annual) - 2020-2050 - RCP4.5 - Mean Precipitation (Mean: Apr - June) - 2070-2100 - RCP8.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP4.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: July - Sep) - 2070-2100 - RCP4.5 - Min Temperature (Maximum: July) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: July - Sep) - 2070-2100 - RCP8.5 - Min Sink point rasters for Puerto Rico StreamStats Seasonal Future Prescribed Burn Windows for the Southeast United States - June-August 2010-2099 RCP 4.5 BNU Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 4.5 CNRM Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 4.5 GFDLM Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 4.5 MRI Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 4.5 CSIRO Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 8.5 IPSL-CM5A-MR Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 8.5 HADSE Historical Prescribed Burn Windows for the Southeast United States 1950-1999 Seasonal Future Prescribed Burn Windows for the Southeast United States - December-February 2010-2099 RCP 8.5 BackscatterB [EM300]--Offshore Aptos, California Sink point rasters for Puerto Rico StreamStats Seasonal Future Prescribed Burn Windows for the Southeast United States - June-August 2010-2099 RCP 4.5 BNU Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 4.5 CNRM Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 4.5 GFDLM Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 4.5 MRI Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 4.5 CSIRO Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 8.5 IPSL-CM5A-MR Monthly Future Prescribed Burn Windows for the Southeast United States 2010-2099 RCP 8.5 HADSE Historical Prescribed Burn Windows for the Southeast United States 1950-1999 Seasonal Future Prescribed Burn Windows for the Southeast United States - December-February 2010-2099 RCP 8.5 Precipitation (Mean: Annual) - 2070-2100 - RCP4.5 - Mean Precipitation (Mean: Annual) - 2070-2100 - RCP8.5 - Max Temperature (Mean: Annual) - 2020-2050 - RCP4.5 - Mean Precipitation (Mean: Apr - June) - 2070-2100 - RCP8.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP4.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: July - Sep) - 2070-2100 - RCP4.5 - Min Temperature (Maximum: July) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: July - Sep) - 2070-2100 - RCP8.5 - Min