Skip to main content
Advanced Search

Filters: Tags: habitats (X) > Extensions: Raster (X) > partyWithName: Ecosystems (X)

55 results (83ms)   

View Results as: JSON ATOM CSV
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
These data represent an resource selection function (RSF) for translocated sage-grouse in North Dakota during the summer. Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution,...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Potentially suitable habitat for the American burying beetle (Nicrophorus americanus) was identified within the Southern Plains. The American burying beetle (ABB) is listed as endangered under the Endangered Species Act, but in 2019 the U.S. Fish and Wildlife Service proposed to reclassify this species as threatened. We applied a deductive model for the ABB that identified potentially suitable habitat using LANDFIRE Existing Vegetation Types (EVT). The habitat model ranked each EVT using one of four categories: (1) favorable; suitable vegetation to support all or critical portions of the ABB life cycle, (2) conditional; favorable only under certain conditions including seasonality of flooding and land management...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
This habitat model was developed to delineate suitable habitat for coastal cactus wren (Campylorhynchus brunneicapillus) in southern California. A primary purpose of the model is to identify potential restoration sites that may not currently support cactus patches required by wrens, but which are otherwise highly suitable. These are areas that could be planted with cactus to increase wren populations, an important management objective for many land managers. We used the Partitioned Mahalanobis D2 modeling technique to construct alternative models with different combinations of environmental variables. Variables were calculated at each point in the center of a 150 m x 150 m cell in a grid of points across the landscape....
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...


map background search result map search result map Estimated habitat suitability for the American burying beetle using land cover classes in the Southern Plains (ver. 1.1, June 2020) Coastal Cactus Wren Habitat Suitability Model for Southern California (2015) Summer RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Species Distribution Model (SDM) for Achnatherum hymenoides in the Mojave Desert Species Distribution Model (SDM) for Ambrosia dumosa in the Mojave Desert Species Distribution Model (SDM) for Amsinckia tessellata in the Mojave Desert Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Asclepias erosa in the Mojave Desert Species Distribution Model (SDM) for Atriplex hymenelytra in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Species Distribution Model (SDM) for Ericameria cooperi in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Hilaria rigida in the Mojave Desert Species Distribution Model (SDM) for Larrea tridentata in the Mojave Desert Species Distribution Model (SDM) for Lupinus odoratus in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Muhlenbergia porteri in the Mojave Desert Species Distribution Model (SDM) for Oenothera deltoides in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria parryi in the Mojave Desert Species Distribution Model (SDM) for Yucca brevifolia in the Mojave Desert Summer RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Coastal Cactus Wren Habitat Suitability Model for Southern California (2015) Species Distribution Model (SDM) for Achnatherum hymenoides in the Mojave Desert Species Distribution Model (SDM) for Ambrosia dumosa in the Mojave Desert Species Distribution Model (SDM) for Amsinckia tessellata in the Mojave Desert Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Asclepias erosa in the Mojave Desert Species Distribution Model (SDM) for Atriplex hymenelytra in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Species Distribution Model (SDM) for Ericameria cooperi in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Hilaria rigida in the Mojave Desert Species Distribution Model (SDM) for Larrea tridentata in the Mojave Desert Species Distribution Model (SDM) for Lupinus odoratus in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Muhlenbergia porteri in the Mojave Desert Species Distribution Model (SDM) for Oenothera deltoides in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria parryi in the Mojave Desert Species Distribution Model (SDM) for Yucca brevifolia in the Mojave Desert Estimated habitat suitability for the American burying beetle using land cover classes in the Southern Plains (ver. 1.1, June 2020)