Skip to main content
Advanced Search

Filters: Tags: landcover (X) > Date Range: {"choice":"month"} (X)

4 results (7ms)   

View Results as: JSON ATOM CSV
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Estimates of area and aerial extent of land-use categories are an essential component for computing the water budget of the High Plains aquifer. These raster land-use land class data represent yearly simulated future land use for the High Plains from 2009 to 2050 These data were developed using the FOREcasting SCEnarios (FORE-SCE) of future land cover model (Sohl and others, 2007; Sohl and Sayler 2008) for two (A2 and B2) of the...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Estimates of area and aerial extent of land-use categories are an essential component for computing the water budget of the High Plains aquifer. These raster land-use land class data represent yearly simulated future land use for the High Plains from 2009 to 2050 These data were developed using the FOREcasting SCEnarios (FORE-SCE) of future land cover model (Sohl and others, 2007; Sohl and Sayler 2008) for two (A2 and B2) of the...
thumbnail
Urban land cover types influence the urban microclimates. However, recent work indicates the magnitude of land cover’s microclimate influence is affected by aridity. Moreover, this variation in cooling and warming potentials of urban land cover types can substantially alter the exposure of urban areas to extreme heat. Our goal is to understand both the relative influences of urban land cover on local air temperature, as well as how these influences vary during periods of extreme heat. To do so we apply predictive machine learning models to an extensive in-situ microclimate and 1 m land cover dataset across eight U.S. cities spanning a wide aridity gradient during typical and extreme heat conditions. We demonstrate...
thumbnail
This landuse / landcover (LULC) map displays a basic depiction of the Los Planes watershed in Baja California Sur, Mexico. This simplified, 7-class LULC map displays classes that are useful for hydrologic modeling and broad vegetation mapping in the region. It was created from analysis of six Sentinel-2 satellite images and other existing geospatial datasets. These satellite images are provided at 10-meter spatial resolution and were calibrated for topographic illumination effects to enhance its accuracy in rugged, mountainous terrain like that seen in the watershed. A novel filtering methodology was also applied to minimize the "salt-and-pepper effect" from the principle component analysis (PCA) and image classification...


    map background search result map search result map DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the A2 Climate Scenario for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the B2 Climate Scenario for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Urban tree cover provides consistent mitigation of extreme heat in arid but not humid cities - data release Landuse / Landcover Map of Los Planes Watershed, Baja California Sur, Mexico Landuse / Landcover Map of Los Planes Watershed, Baja California Sur, Mexico DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the A2 Climate Scenario for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the B2 Climate Scenario for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Urban tree cover provides consistent mitigation of extreme heat in arid but not humid cities - data release