Folders: ROOT > ScienceBase Catalog > LandCarbon > Projects > Alaska permafrost and inland waters > Alaska permafrost characterization > Alaska permafrost characterization: Geophysical and related field data ( Show all descendants )
3 results (7ms)
Location
Folder
ROOT _ScienceBase Catalog __LandCarbon ___Projects ____Alaska permafrost and inland waters _____Alaska permafrost characterization ______Alaska permafrost characterization: Geophysical and related field data
Filters
Date Range
Extensions Types
Contacts
Categories Tag Types Tag Schemes |
Airborne electromagnetic (AEM) and magnetic survey data were collected during February 2016 along 300 line kilometers in the western Yukon Flats near Stevens Village, Alaska. Data were acquired with the CGG RESOLVE frequency-domain helicopter-borne electromagnetic systems together with a Scintrex Cesium Vapour CS-3 magnetometer. The AEM average depth of investigation is about 100 m. The survey was flown at a nominal flight height of 30 m above terrain along widely spaced reconnaissance lines. This data release includes raw and processed AEM data and laterally-constrained inverted resistivity depth sections along all flight lines. This release also includes unprocessed and processed magnetic data that has been drift...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Alaska,
City of Fairbanks,
Disturbance,
Fire,
Permafrost,
|
![]() |