Skip to main content
Advanced Search

Filters: Date Range: {"choice":"month"} (X) > Extensions: Budget (X)

162 results (25ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Conifer encroachment is one of the most significant threats to sagebrush habitats and the species that rely on them. Removal of encroaching conifers is beneficial for Greater Sage-Grouse, but impacts on other sagebrush-obligate species are not well understood. This project aims to quantify the impact of conifer removal on sagebrush songbird abundance and reproductive success. Work has been initiated through a previously-supported (by IR5/7 SA) Cooperative Fish and Wildlife Research Unit project across six conifer-removal and six conifer-remaining (control) plots of ca. 55 ha each. Initial results suggest that conifer removal benefits both abundance and nesting success of sagebrush-obligate species (Brewers Sparrows...
thumbnail
The 2017 fire season in California was highly unusual with its late seasonal timing, the areal extent it burned, and its devastation to communities. These fires were associated with extreme winds and were potentially also influenced by unusually dry conditions during several years leading up to the 2017 events. This fire season brought additional attention and emphasized the vital need for managers in the western U.S. to have access to scientific information on when and where to expect dangerous fire events. Understanding the multiple factors that cause extreme wildfire events is critical to short and long-term forecasting and planning. Seasonal climate measures such as temperature and precipitation are commonly...
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
Drought and wildfire pose enormous threats to the integrity of natural resources that land managers are charged with protecting. Recent observations and modeling forecasts indicate that these stressors will likely produce catastrophic ecosystem transformations, or abrupt changes in the condition of plants, wildlife, and their habitats, in regions across the country in coming decades. In this project, researchers will bring together land managers who have experienced various degrees of ecosystem transformation (from not yet experiencing any changes to seeing large changes across the lands they manage) to share their perspectives on how to mitigate large-scale changes in land condition. The team will conduct surveys...
thumbnail
In southwestern Colorado, land managers anticipate the impacts of climate change to include higher temperatures, more frequent and prolonged drought, accelerated snowmelt, larger and more intense fires, more extreme storms, and the spread of invasive species. These changes put livelihoods, ecosystems, and species at risk. Focusing on communities in southwestern Colorado’s San Juan and Gunnison river basins, this project will expand opportunities for scientists, land managers, and affected residents to identify actions that can support resilience and adaptation in the face of changing climate conditions. This project builds on the project “Building Social and Ecological Resilience to Climate Change in southwestern...
thumbnail
One of the biggest challenges facing resource managers today is not knowing exactly when, where, or how climate change effects will unfold. To help federal land managers address this need, the North Central CASC has been working with the National Park Service to pioneer an approach for incorporating climate science and scenario planning into NPS planning processes, in particular Resource Stewardship Strategies (RSS). These strategies serve as a long-range planning tool for a national park unit to achieve its desired natural and cultural resource conditions, and are used to guide a park’s full spectrum of resource-specific management plans and day-to-day management activities. To support adaptation planning within...
thumbnail
Researchers with the North Central Climate Science Center have made substantial progress in assessing the impacts of climate and land use change on wildlife and ecosystems across the region. Building on this progress, researchers will work with stakeholders to identify adaptation strategies and inform resource management in the areas that will be most affected by changing conditions. There are several components of this project. First, researchers will use the Department of Interior “resource briefs” as a mechanism to communicate information to resource managers on climate and land use change and their impacts to resources. These briefs will support coordinated management of ecosystems that contain public, private,...
thumbnail
In the northern Gulf of Mexico, mangrove forests have been expanding their northern range limits in parts of Texas, Louisiana, and north Florida since 1989. In response to warming winter temperatures, mangroves, which are dominant in warmer climates, are expected to continue migrating northward at the expense of salt marshes, which fare better in cooler climates. The ecological implications and timing of mangrove expansion is not well understood, and coastal wetland managers need information and tools that will enable them to identify and forecast the ecological impacts of this shift from salt marsh to mangrove-dominated coastal ecosystems. To address this need, researchers will host workshops and leverage existing...
thumbnail
Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change. In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty...
thumbnail
Northeastern boreal forests are an important habitat type for many wildlife species, including migratory birds and moose. These animals play vital roles in the boreal forest ecosystem, are a source of pleasure for bird and wildlife watchers, and contribute to tourism revenue for many communities. However, moose and migratory birds are thought to be particularly vulnerable to the impacts of climate change. For example, in New York’s Adirondack Park system, five species of boreal birds have shown occupancy declines of 15% or more. Meanwhile, moose are threatened by winter ticks that thrive in warmer climates and spread disease. A 2018 New York Department of Environmental Conservation (NYDEC) report found that there...
thumbnail
Changing climate conditions such as increasing droughts, floods, and wildfires, hotter temperatures, declining snowpacks, and changes in the timing of seasonal events are already having an impact on wildlife and their habitats. In order to make forward-looking management decisions that consider ongoing and future projected changes in climate, managers require access to climate information that can be easily integrated into the planning process. Co-production, a process whereby scientists work closely with managers to identify and fill knowledge gaps, is an effective means of ensuring that science results will be directly useful to managers. Through a multi-phase project, researchers are implementing co-production...
thumbnail
Hawaiʻi is considered a worldwide biodiversity hotspot, with nearly 90 percent of its native plants found nowhere else in the world. However, about half of these native plants are imperiled by threats including human development, non-native species, and climate change. Through this project, scientists modeled the relative vulnerability of over 1,000 native plant species to the effects of climate change. A panel of experts in Hawaiian plant species assisted with the development of the model and verified its results. From the model, researchers were able to develop a vulnerability score for each plant species and identify categories of species with high, medium, and low vulnerability to climate change. This information...
thumbnail
The beaches of the Hawaiian Islands attract nearly 9 million visitors each year, who inject around $15.6 billion into the state’s economy and support almost 200,000 jobs. Beyond their economic importance, Hawaiian beaches are also culturally and ecologically valuable. However, climate change driven sea-level rise is causing many beaches to disappear, endangering property, infrastructure, and critical habitats. The goal of this project was to develop a method for forecasting erosion-vulnerable beach areas that could be used in coastal management planning. Researchers focused on the island of Kauaʻi, modeling beach response to rising sea level over the next century and producing maps that provide information about...
thumbnail
Landscape-scale conservation of threatened and endangered species is often challenged by multiple, sometimes conflicting, land uses. In Hawaiʻi, efforts to conserve native forests have come into conflict with objectives to sustain non-native game mammals, such as feral pigs, goats, and deer, for subsistence and sport hunting. Maintaining stable or increasing game populations represents one of the greatest obstacles to the recovery of Hawaii’s 425 threatened and endangered plant species. Many endemic Hawaiian species have declined and become endangered as a result of herbivorous non-native game mammals. Meanwhile, other environmental changes, including the spread of invasive grasses and changing precipitation patterns...
thumbnail
Hawaiian shorelines and near-shore waters have long been used for cultural activities, food gathering and fishing, and recreation. As seascapes are physically altered by changing climate, the ways in which people experience these environments will likely change as well. Local perspectives of how seascapes are changing over time can help managers better understand and manage these areas for both natural persistence and human use. For this project, researchers conducted interviews and surveys of surfers and other ocean users to gather observations and perceptions of change over time at Hilo Bay, Hawaiʻi. They combined these results with historical data on public beach use and biophysical data from monitoring buoys...
thumbnail
This project will support the use of the Breeding Bird Survey (BBS) data to calculate current populations, population trend, and ultimately desired population objectives for the priority species outlined in the IR 5/7 SHC Plan. Benchmarks will be estimated to highlight grassland and sagebrush habitat needed to support desired populations as outlined in the Partners in Flight Plan by 2050. The BCR specific population targets provide a solid foundation to continue to build and refine the R6 SHC Teams Work towards effective planning and ultimately effective on-the-ground conservation delivery. A $55,000 investment supports conservation priorities for both Grassland and Sagebrush Ecosystems.
thumbnail
Haleakalā National Park (HNP) and the surrounding landscape spans many different land cover types, some of which are undergoing vegetation changes that can reduce the amount of water that infiltrates into soil. Decreased soil infiltration can lead to the erosion of terrestrial habitats, increases in the amount of sediment entering aquatic habitats, and flooding of downstream areas as runoff increases after storms. Currently, HNP managers are attempting to control runoff and erosion to avoid loss and damage within park boundaries and parks located downstream. Managers in HNP have expressed a need for information on current and future runoff and erosion risk to help prioritize management within the park and other...
thumbnail
Climate change is already affecting ecosystems, and will likely trigger significant and permanent changes in both ecological and human communities. Such transformations are already occurring in the Arctic region of Alaska, where temperatures are warming at twice the global average and causing some ecosystems to transition to new states. Arctic warming has led to coastal erosion that has forced human communities to relocate and a loss of sea ice that has forced marine mammals, such as polar bears and walrus, to adapt to a more terrestrial mode of living. Meanwhile, in the Great Plains of the U.S., past interactions between land and water use during the Dust Bowl and recent high rates of depletion of the Ogallala...
thumbnail
The conditions of coral reefs in the Hawaiian Islands are predicted to decline significantly from climate change over the next 100 years. To better prepare for the impacts of climate change on Hawaiian reefs, the research team uses a system of models to simulate ocean waves and circulation, rainfall and storm run-off, and coral reef community dynamics through the year 2100. These models will identify reef areas that are either vulnerable or resilient to the many stressors that the future may hold for reefs. The team’s hope is that this work can identify areas that might benefit from management actions to minimize local stressors such as land-based pollution. Through a collaborative partnership with state and federal...
thumbnail
Water is a key ecosystem service that provides life to vegetation, animals, and human communities. The distribution and flow of water on a landscape influences many ecological functions, such as the distribution and health of vegetation and soil development and function. However, the future of many important water resources remains uncertain. Reduced snowfall and snowpack, earlier spring runoff, increased winter streamflow and flooding, and decreased summer streamflow have all been identified as potential impacts to water resources due to climate change. These factors all influence the water balance in the Pacific Coastal Temperate Rainforest (PCTR). Ensuring healthy flow and availability of water resources is...


map background search result map search result map Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Projections of Future Coral Reef Communities in DOI-Managed Coastal Areas in the Hawaiian Islands Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Changing Hawaiian Seascapes and Their Management Implications Forecasting Future Changes in Sagebrush Distribution and Abundance Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Refining Guidance for Incorporating Climate Science and Scenario Planning into National Park Service Resource Stewardship Strategies Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Adaptation Strategies in the Face of Climate-Driven Ecological Transformation: Case Studies from Arctic Alaska and the U.S. Great Plains Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Dedicated individual to develop and refine the BBS trend data by state portion of Bird Conservation Regions (11, 17, 18, 19) to develop population objectives Impacts of Conifer Removal on Sagebrush Songbirds Refining Guidance for Incorporating Climate Science and Scenario Planning into National Park Service Resource Stewardship Strategies Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Changing Hawaiian Seascapes and Their Management Implications Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Impacts of Conifer Removal on Sagebrush Songbirds Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Projections of Future Coral Reef Communities in DOI-Managed Coastal Areas in the Hawaiian Islands Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Forecasting Future Changes in Sagebrush Distribution and Abundance Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Dedicated individual to develop and refine the BBS trend data by state portion of Bird Conservation Regions (11, 17, 18, 19) to develop population objectives Adaptation Strategies in the Face of Climate-Driven Ecological Transformation: Case Studies from Arctic Alaska and the U.S. Great Plains