Skip to main content
Advanced Search

Filters: Tags: {"type":"Label","name":"2012"} (X) > Categories: Project (X) > Types: OGC WFS Layer (X)

71 results (166ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Label )
View Results as: JSON ATOM CSV
thumbnail
This project initiated the first large-scale Tribal government discussions on the relationship of scientific research and traditional knowledge in the activities of the NPLCC. The project: 1. Reviewed existing approaches and protocols related to scientific research and traditional knowledge in the Pacific Northwest, characterized different types of traditional knowledge and the contexts in which these are encountered; 2. Initiated discussions among the 21 member Tribes of the Northwest Indian Fisheries Commission (all other Tribes are welcome to join); 3. Reported on their views; 4. Proposed a framework for the use of TK based on discussions and presented it for a possible consensus by all participants; and 5. Conducted...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Academics & scientific researchers, Decision Support, Federal resource managers, Informing Conservation Delivery, All tags...
thumbnail
The project had 2 broad objectives. The first objective was to meet the needs of the Yurok Tribe in collecting and documenting TEK to inform tribal planning related to climate change impacts to culturally significant wildlife and habitats that support these species. This information is crucial to informing Yurok Tribe resource managers and the Yurok Council as it embarks on climate change adaptation planning. The Yurok Tribes Council and Environmental, Forestry, Wildlife, Fisheries and Cultural Resources Programs will benefit from the knowledge and wisdom gained from the project as the Tribe prepares for climate change impacts. The second objective was to assist the NPLCC in its efforts to integrate Tribal TEK into...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Academics & scientific researchers, CA-2, CA-2, California, All tags...
thumbnail
WGFD has a quantity of GPS-based animal movement data available for processing. In order to fully integrate this data into existing statewide migration route data layers and/or to use it to develop modeled migration corridor data layers, it must be reviewed, organized appropriately, analyzed, modeled and finally structured to allow seamless integration. The objective of this proposal is to review and examine the data, organize it meaningfully, and present it initially in combination with existing migration routes in order to represent generalized big game migration corridors across the landscapes of Wyoming. This is anticipated as a “first look” product, and serve as a basis for future work to more fully analyze...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2012, CO-2, CO-3, CO-3, All tags...
thumbnail
Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers. This project used a dynamic vegetation model to simulate vegetation type (grassland, shrubland, woodland, and forest) for the NGP for a range of projected future climates and relevant management scenarios. Comparing results of these simulations illustrates...
thumbnail
A limited amount of valid scientific information about global climate change and its detrimental impacts has reached the public and exerted a positive impact on the public policy process or future planning for adaptation and mitigation. This project was designed to address this limitation by bringing together expertise in the social and communication sciences from targeted academic institutions affiliated with the Department of the Interior’s Climate Science Centers (CSCs) through a workshop. The project team brought together expertise in the social and communication sciences from targeted academic institutions, particularly experts and scholars who are affiliated with the nation’s CSCs, by means of an invited...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
The western coast of Alaska is a remote region, rich in wildlife and providing critical nesting habitat for many of Alaska’s seabirds. It is also home to indigenous communities who rely upon the region’s natural resources to support a traditional lifestyle of hunting, gathering, and fishing. Although the region is frequently subject to extensive inland flooding from Bering Sea storms, little is known about the extent and frequency of flooding and its impacts on vegetation, wildlife, and water quality. Furthermore, information is lacking about how climate change and sea-level rise (which can influence the frequency and intensity of storms and subsequent flooding) are affecting this area, its communities, and their...
thumbnail
This project obtained information regarding past catastrophic events, such as tsunamis, and TEK through oral history interviews with Tolowa elders regarding the effects of climate change and tsunamis on traditional smelt fishing camps; generated a GIS model of coastal inundation due to sea level rise and overlaid that with known archaeological and ethnographic resources; generated a final report with detailed information of past tsunami events, and modeled the potential effects of climate change and sea level rise on archaeological and ethnographic Tolowa sites using TEK and GIS based upon the results of this study.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, CA-2, CA-2, California, California, All tags...
thumbnail
The project will utilize a 4.5 million acre study area on the Montana Glaciated Plains. The objectives are to (1) identify environmental conditions and management practices that will maintain habitat for grassland birds but not impact ranching sustainability, and (2) identify areas on the landscape that have the greatest conservation potential for grassland birds. This spatial analysis will provide the framework for a rigorous assessment of management actions on the Montana Glaciated Plains.
thumbnail
Spatial data depicting marsh types (e.g. fresh, intermediate, brackish and saline) for the north-central Gulf of Mexico coast are inconsistent across the region, limiting the ability of conservation planners to model the current and future capacity of the coast to sustain priority species. The goal of this study was to (1) update the resolution of coastal Texas vegetation data to match that of Louisiana, Mississippi, and Alabama, and (2) update vegetation maps for the Texas through Alabama region using current Landsat Imagery. Creating consistent regional vegetation maps will enable scientists to model vegetation response to and potential impacts of future climate change.
thumbnail
The climate of the North Central U.S. is driven by a combination of factors, including atmospheric circulation patterns, the region’s complex topography which extends from the High Rockies to the Great Plains, and variations in hydrology. Together, these factors determine the sustainability of the region’s ecosystems and the services that they provide communities. In order to understand the vulnerability of the region’s ecosystems to change, it is necessary to have reliable projections of future climate conditions. To address this need, researchers first examined past and present variations in climate and assessed the ability of climate models to effectively project future climate conditions for the region. Second,...
thumbnail
Land transformations occurring from energy development and agrarian use have altered the natural connectivity of fish communities inhabiting prairie waterways. The nation’s prairie waterways are obstructed by thousands of barriers that include road culverts, irrigation diversions, and dams. Connectivity is essential for the long term viability of aquatic species. One of the most promising adaptive management strategies for addressing impacts to aquatic systems by climate change and other landscape stressors is increasing connectivity. The purpose of this research is to characterize swimming abilities of three northern plains fish species; the sauger, the longnose dace, and the fathead minnow. The results of the...
thumbnail
Map drained wetland basins in the PPR of Iowa and complete data set for the eastern (Region 3) of the U.S. Prairie Pothole Regionl. These data form the foundation for a newly launced inititative to develop an “Integrated Conservation Design Strategy for the PPR of Minnesota and Iowa.” This new initiative integrates wildlife habitat, water quality and flood attenuation objectives with wetland restoration potential maps to develop multi-objective wetland restoration plans for landscape-scale watershed.
thumbnail
The western coastline of Alaska is highly susceptible to coastal storms, which can cause erosion, flooding, and saltwater storm surge, affecting natural ecosystems, human communities, and commercial activity. Historically, a large buffer of ice along the shoreline has protected this region from some of the more severe effects of coastal storms. However, climate change may not only increase the frequency and intensity of storms, but also cause a loss of shoreline ice, possibly increasing the incidence of coastal erosion and flooding and introducing saltwater to freshwater environments. These hazards have the potential to substantially disrupt the environment and commerce in the region, but more information is needed...
thumbnail
Habitat fragmentation, modification, and loss have been implicated in the decline of many species, including more than 85% of those considered threatened or endangered. Therefore, connectivity, or the ability of organisms to move among habitat patches, is a critical component of landscape health. In addition to influencing the sustainability of wildlife populations and communities, connectivity also contributes to the availability of ecosystem services. The goal of this project was to evaluate terrestrial connectivity across the South Central United States, with a focus on the impact of projected climate and land use changes. The researchers addressed this goal using a variety of approaches, including evaluating...
thumbnail
Climate change is expected to alter stream temperature and flow regimes over the coming decades, and in turn influence distributions of aquatic species in those freshwater ecosystems. To better anticipate these changes, there is a need to compile both short- and long-term stream temperature data for managers to gain an understanding of baseline conditions, historic trends, and future projections. Unfortunately, many agencies lack sufficient resources to compile, conduct quality assurance and control, and make accessible stream temperature data collected through routine monitoring. Yet, pooled data from many sources, even if temporally and spatially inconsistent, can have great value both in the realm of stream temperature...
thumbnail
In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing animals capable of adapting by moving to expand into new areas to find more suitable temperatures and adequate food supplies – a challenge made difficult, if not impossible, by disconnected landscapes. Maintaining connectivity between habitats is a key strategy for conserving wildlife populations into the future, and sound...
thumbnail
Permafrost – the thick layer of permanently frozen soil found in Arctic regions – has been thawing rapidly over the past century due to climate change. When permafrost thaws unevenly, it produces thermokarst landscapes, irregular surfaces of small hills interspersed with hollows. The processes that produce thermokarst can lead to significant changes within the surrounding ecosystems, altering water quality, vegetation, and water, carbon, and nutrient storage and flows. These changes can have substantial implications for fish and wildlife populations and disrupt rural communities and infrastructure. The goal of this project was to better understand the extent of thermokarst processes and the rate at which they...
thumbnail
A number of large-scale mapping projects have been completed in the U.S., and several cover all or some parts of the footprint of the Northeast Climate Science Center (NE CSC). These include maps by the Southeast GAP Analysis (SEGAP) program, the national LANDFIRE program, NatureServe, and The Nature Conservancy. These mapping projects represent a major step forward in describing the current extent of ecosystems on the landscape, and provide resource management agencies and organizations with unprecedented access to spatial information on these systems. In a number of cases, the ranges of these maps overlap. As a result, staff of resource management agencies and organizations are faced with trying to determine how...


map background search result map search result map Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Terrestrial Connectivity Across the South Central United States: Implications for the Sustainability of Wildlife Populations and Communities Mapping Fresh, Intermediate, Brackish and Saline Marshes in the North Central Gulf of Mexico Coast to Inform Future Projections Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Understanding Habitat Connectivity to Inform Conservation Decisions Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Modeling Future Storm Impacts on the Yukon-Kuskokwim Delta Modeling Western Alaska Coastal Hazards Understanding Extreme Climate Events in the North Central U.S. Monitoring Thermokarst on the Landscapes of Northern Alaska Iowa Wetland Assessment and Restorable Wetland Inventory:  Improving Wetland Restoration Planning Through Processing of Recently Collected LIDAR data for the Prairie Pothole Region of Iowa Grassland Bird Conservation on Working Landscapes: Spatial analysis linking populations to habitat Maintaining migratory pathways of imperiled Large River and Small Stream Fishes in the Face of Climate Change and Energy Development State of Wyoming Geospatial Data Management, Information Sharing and Preparation for Decision Support System Development - Migration Corridors Utilizing Yurok traditional ecological knowledge to inform climate change priorities Gathering Our Thoughts: Tribal recommendations on a traditional knowledge management framework for the NPLCC - Tulalip Tribes of WA Using TEK to model the effects of climate change and sea-level rise on coastal cultural resources at Tolowa Dunes State Park, Del Norte County, California Utilizing Yurok traditional ecological knowledge to inform climate change priorities Using TEK to model the effects of climate change and sea-level rise on coastal cultural resources at Tolowa Dunes State Park, Del Norte County, California Modeling Future Storm Impacts on the Yukon-Kuskokwim Delta Mapping Fresh, Intermediate, Brackish and Saline Marshes in the North Central Gulf of Mexico Coast to Inform Future Projections Gathering Our Thoughts: Tribal recommendations on a traditional knowledge management framework for the NPLCC - Tulalip Tribes of WA Iowa Wetland Assessment and Restorable Wetland Inventory:  Improving Wetland Restoration Planning Through Processing of Recently Collected LIDAR data for the Prairie Pothole Region of Iowa State of Wyoming Geospatial Data Management, Information Sharing and Preparation for Decision Support System Development - Migration Corridors Grassland Bird Conservation on Working Landscapes: Spatial analysis linking populations to habitat Monitoring Thermokarst on the Landscapes of Northern Alaska Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Modeling Western Alaska Coastal Hazards Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Understanding Extreme Climate Events in the North Central U.S. Maintaining migratory pathways of imperiled Large River and Small Stream Fishes in the Face of Climate Change and Energy Development Terrestrial Connectivity Across the South Central United States: Implications for the Sustainability of Wildlife Populations and Communities A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Understanding Habitat Connectivity to Inform Conservation Decisions Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning Evaluating the Use of Models for Projecting Future Water Flow in the Southeast