Skip to main content
Advanced Search

Filters: Tags: {"type":"Label","scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Project/OrganizationType"} (X) > Categories: Project (X) > Extensions: Expando (X) > Types: OGC WMS Layer (X)

3 results (117ms)   

View Results as: JSON ATOM CSV
thumbnail
This project applied sea-level rise (SLR) modeling approaches along the Pacific coast tidal gradient at a parcel scale through improved data collection tools and collaboration relevant to land managers. At selected salt marsh parcels in both the North Pacific and California LCCs, data collection techniques were employed to assess detailed baseline habitat elevations; tidal ranges, microclimate, and extreme weather events; sediment supply sources; vegetation community composition; and vertebrate population indices. The design provides resource managers with information on the value of different datasets and methods including their uncertainty, as well as determines their usefulness in climate change adaptation planning...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2011, Academics & scientific researchers, Alaska, British Columbia, CA-2, All tags...
thumbnail
Ongoing and future climate change throughout Alaska has the potential to affect terrestrial ecosystems and the services that they provide to the people of Alaska and the nation. These services include the gathering of food and fiber by Alaskan communities, the importance of ecosystems to recreation, cultural, and spiritual activities of people in Alaska, and the way that land cover and vegetation in ecosystems affect temperature and water flow (runoff, flooding etc.) throughout the state. Assessments of the effects of climate change on these “ecosystem services” have been hindered by a lack of tools (e.g. computer models) capable of forecasting future landscapes in a changing climate while taking into account numerous...
thumbnail
The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake. Although some variability in fish catches is expected across factors such as location and season, we know less about how large-scale disturbances like climate change will influence population variability. The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non-native species, and shifting climatic patterns. In this project, we analyzed established long-term data about...


    map background search result map search result map Understanding the Varying Responses of Fish Populations to Future Climate Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change Humboldt Bay NWR Sea-level rise modeling Understanding the Varying Responses of Fish Populations to Future Climate Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change