Skip to main content
Advanced Search

Filters: Extensions: Raster (X) > partyWithName: Stephanie R Sattler (X)

8 results (18ms)   

View Results as: JSON ATOM CSV
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
This dataset is a pre-nourishment digital elevation model (DEM) of the beach topography of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. Lidar data were collected June 24, 2021, using a boat mounted Velodyne VLP-16 unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
thumbnail
This dataset is a pre-nourishment digital elevation model (DEM) of the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The DEMs have a 10-meter (m; 32.8084 feet) or a 5-meter (m; 16.4042 feet) cell size, and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit...


    map background search result map search result map UMRR Pool 03 Topobathy UMRR Pool 07 Topobathy UMRR Pool 08 Topobathy UMRR Pool 09 Topobathy UMRR Pool 13 Topobathy UMRR Pool 21 Topobathy 1-meter Digital elevation model (DEM) of beach topography of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 Digital elevation model (DEM) of beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 Digital elevation model (DEM) of beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 UMRR Pool 21 Topobathy UMRR Pool 07 Topobathy UMRR Pool 08 Topobathy UMRR Pool 03 Topobathy UMRR Pool 09 Topobathy UMRR Pool 13 Topobathy