Skip to main content
Advanced Search

Filters: Date Range: {"choice":"month"} (X) > partyWithName: North Central CASC (X)

14 results (101ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
States in the North Central (NC) region have already been invaded by grass speciescapable of altering fire regimes and creating self-perpetuating 'grass-fire cycles'. Under climatechange, these grasses may interact with drought and fire to burn more and exclude native species. Managers can plan for these interactions and create collaborative communities to address thesecomplex challenges.
thumbnail
In recent decades, Rocky Mountain accumulated snowpack levels have experienced rapid declines, yet long-term records of snowpack prior to the installation of snowpack observation stations in the early and mid 20th century are limited. To date, a small number of tree-ring based reconstructions of April 1 Snow Water Equivalent (SWE) in the northern Rocky Mountains have extended modern records of snowpack variability to ~1200 C.E. Carbonate isotope lake sediment records, provide an opportunity to further extend tree-ring based reconstructions through the Holocene, providing a millennial-scale temporal record that allows for an evaluation of multi-scale drivers of snowpack variability, from internal climate dynamics...
Climate change is altering fire regimes and post-fire conditions, contributing to relatively rapid transformation of landscapes across the western US. Studies are increasingly documenting post-fire vegetation transitions, particularly from forest to non-forest conditions or from sagebrush to invasive annual grasses. The prevalence of climate-driven, post-fire vegetation transitions is likely to increase in the future with major impacts on social–ecological systems. However, research and management communities have only recently focused attention on this emerging climate risk, and many knowledge gaps remain. We identify three key needs for advancing the management of post-fire vegetation transitions, including centering...
Categories: Publication; Types: Citation
thumbnail
Grasslands in the northern Great Plains are important ecosystems that support local economies, tribal communities, livestock grazing, diverse plant and animal communities, and large-scale migrations of big game ungulates, grassland birds, and waterfowl. Climate change and variability impact how people and animals live on and interact with grasslands, and can bring more frequent droughts, fires, or new plant species that make managing these landscapes challenging. Understanding how climate change and variability will impact grassland ecosystems and their management in the 21st century first requires a synthesis of what is known across all of these scales and a gap analysis to identify key areas of focus for future...
thumbnail
The broadly shared information needs for grassland managers in the North Central region to meet conservation goals in a changing climate are presented and ranked as highly relevant, somewhat relevant, or not relevant for federal, state, tribal, and non-governmental grassland-managing entities.
Soil moisture is crucial for agriculture and hydrology, but its accurate prediction is challenging due to inadequate representation of various complex land surface processes and meteorological influences. In this research, we employ the Long Short-Term Memory (LSTM) framework, a specific architecture of deep learning networks that is effective in processing time series data, for predicting soil moisture. We have developed the Next Generation Interactive Soil Moisture Forecasting System to advance skillful soil moisture predictions at sub-seasonal timescales by leveraging advanced analytics and deep learning, with LSTM at its core. We combined the state-of-the-art climate model's (Community Earth System Model Version...
Categories: Publication; Types: Citation
Phenology detection from remotely sensed data remains challenging in semi-arid ecosystems due to the unique spatial heterogeneity and irregular temporal growth in plants. PlanetScope imagery, with fine spatial and temporal resolutions, is revolutionizing the earth observation sector. It has demonstrated its effectiveness in monitoring phenology dynamics across various terrestrial ecosystems. However, the quality and accuracy of PlanetScope data for depicting plant growth development and detecting phenological metrics (phenometrics) in semi-arid environments have not been systematically examined. In this study, we evaluated the capability of PlanetScope for monitoring plant-specific phenology across the semi-arid...
Categories: Publication; Types: Citation
The operational Simplified Surface Energy Balance (SSEBop) model has been utilized to generate gridded evapotranspiration data from Landsat images. These estimates are primarily driven by two sources of information: reference evapotranspiration and Landsat land surface temperature (LST) values. Hence, SSEBop is limited by the availability of Landsat data. Here, in this proof-of-concept paper, we utilize the Continuous Change Detection and Classification (CCDC) algorithm to generate synthetic Landsat data, which are then used as input for SSEBop to generate evapotranspiration estimates for six target areas in the continental United States, representing forests, shrublands, and irrigated agriculture. These synthetic...
Categories: Publication; Types: Citation
We developed a framework to estimate high-resolution spatiotemporal soil moisture (monthly, annual, and seasonal) and temperature-moisture regimes. Our approach uses the Newhall simulation model (NSM) which we fully describe in the Larger Citation. For our analyses, we developed and used open-source software (spatial_nsm) relying on Python^TM^ that was translated from jNSM software (v. 1.6.1; U.S. Department of Agriculture 2016)---a java implementation of the NSM relies on aspatial climate stations. Our software allows for spatial estimates, supports additional parameters to inform the model, and improves upon elements of the originating software. Briefly, the NSM is an accounting system of water movement in a vertical...
Categories: Publication; Types: Citation
thumbnail
This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Climate Reconstruction. The data include parameters of climate reconstructions|instrumental|tree ring with a geographic location of North America. The time period coverage is from 1150 to -65 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.
thumbnail
We used an individual-based plant simulation model that represents intra- and inter-specific competition for water availability, which is represented by a process-based soil water balance model. For dominant plant functional types, we quantified changes in biomass and characterized agreement among 52 future climate scenarios. We then used a multivariate matching algorithm to generate fine-scale interpolated surfaces of functional type biomass for our study area.
The Climate Adaptation Science Centers have conducted numerous training and skills development activities to support tribal and indigenous partners as they seek to use scientific information and techniques to understand and respond to climate change impacts. Because these activities were generated in different CASC regions, with different tribal / indigenous stakeholders, climate change contexts, and training needs, and because the CASC network encourages innovation, these activities were not developed or implemented in a nationally consistent format. This project seeks to identify relevant activities, gather related materials and links that might benefit others seeking to implement similar activities, provide a...
Categories: Data
thumbnail
This project investigated how climate change over the last 21,000 years, which was characterized by significant warming, influenced vegetation in the Southern and Middle Rockies. We found that rapid vegetation change was initiated across these landscapes once a 2 ℃ temperature increase was realized and again recently with reduced rainfall. Southwesterly slopes in the Southern Rockies were prone to rapid change, otherwise landscape features didn’t have a strong effect. We also examined vegetation transformations (e.g., sagebrush steppe switches to a lodgepole pine forest) and identified between one and four vegetation transformations at each site, for a total of 60 transformations, over half of which occurred rapidly....
thumbnail
The Bureau of Land Management (BLM) manages the largest area of public lands in the United States. Decision-making on BLM lands is complex because managers have to balance diverse, sometimes conflicting, resources, uses, and values. Land managers are more likely to achieve long-term land management goals and balance multiple desired uses and values across public landscapes when their decisions are informed by the best available science, including climate science. Strengthening the use of science and climate information in federal decision making is a priority for the current administration and for federal agencies, including the BLM. The Climate Adaptation Science Centers are committed to developing climate science...


    map background search result map search result map Synthesis of Climate Impacts and Adaptation on Grassland Ecosystems in the Northern Great Plains NOAA/WDS Paleoclimatology - Northern Rockies 2,200 Year Snow Water Equivalent Reconstructions Divergent climate change effects on widespread dryland plant communities driven by climatic and ecohydrological gradients PaleoTransformation Analysis Model Code RISCC Network Management Challenge: The Invasive Grass-Fire Cycle in the North Central U.S. Broadly Shared Information Needs Among Grassland Managers in the North Central Region NOAA/WDS Paleoclimatology - Upper Missouri River Basin 1,200 Year Streamflow Reconstructions Short Science Syntheses and NEPA Analyses for Climate-Informed Land Management Decisions in Sagebrush Rangelands NOAA/WDS Paleoclimatology - Upper Missouri River Basin 1,200 Year Streamflow Reconstructions PaleoTransformation Analysis Model Code NOAA/WDS Paleoclimatology - Northern Rockies 2,200 Year Snow Water Equivalent Reconstructions Synthesis of Climate Impacts and Adaptation on Grassland Ecosystems in the Northern Great Plains RISCC Network Management Challenge: The Invasive Grass-Fire Cycle in the North Central U.S. Broadly Shared Information Needs Among Grassland Managers in the North Central Region Divergent climate change effects on widespread dryland plant communities driven by climatic and ecohydrological gradients Short Science Syntheses and NEPA Analyses for Climate-Informed Land Management Decisions in Sagebrush Rangelands