Skip to main content
Advanced Search

Filters: Tags: {"type":"Label"} (X) > Categories: Project (X)

990 results (35ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Label )
View Results as: JSON ATOM CSV
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
Appropriate ecological indicators of climate change can be used to measure concurrent changes in ecological systems, inform management decisions, and potentially to project the consequences of climate change. However, many of the available indicators for North American birds do not account for imperfect observation. We proposed to use correlated-detection occupancy models to develop indicators from the North American Breeding Bird Survey data. The indicators were used to test hypotheses regarding changes in range and distribution of breeding birds. The results will support the Northeast Climate Science Center’s Science Agenda, including the science priority: researching ecological vulnerability and species response...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there are key uncertainties that impede decision making....
thumbnail
Natural resource managers consistently identify invasive species as one of the biggest challenges for ecological adaptation to climate change. Yet climate change is often not considered during their management decision making. Given the many ways that invasive species and climate change will interact, such as changing fire regimes and facilitating the migration of high priority species, it is more critical than ever to integrate climate adaptation science and natural resource management. The coupling of climate adaptation and invasive species management remains limited by a lack of information, personnel, and funding. Those working on ecological adaptation to climate change have reported that information is not...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
Water scarcity is a growing concern in Texas, where surface water is derived almost entirely from rainfall. Changes in air temperature and precipitation patterns associated with global climate change are anticipated to regionally affect the quality and quantity of inland surface waters and consequently their suitability as habitat for freshwater life. In addition to directly affecting resident organisms and populations, these changes in physicochemical traits of aquatic habitats may favor the establishment of harmful invasive species. As conflicts over the use of water resources grow in intensity, this information will become important for fish and wildlife managers to anticipate impacts of climate change on trust...
thumbnail
Throughout its native range in the Eastern U.S., the brook trout is a culturally and economically important species that is sensitive to warming stream temperatures and habitat degradation. The purpose of this assessment was to determine the impacts that projected future land use and climate changes might have on the condition of stream habitat to support self-sustaining brook trout populations. The study region encompassed the historic native range of brook trout, which includes the northeastern states and follows the Appalachian Mountains south to Georgia, where the distribution is limited to higher elevation streams with suitable water temperatures. Relationships between recent observations of brook trout and...
thumbnail
Global climate change and sea-level rise will have profound effects on estuarine fish, shellfish and wildlife populations and their habitats. Our ability to manage sustainable fish, shellfish and other wildlife populations in the future will be seriously compromised unless we have a basic understanding of the coming changes and use this to develop mitigation and adaptation measures. The overall objective of this multi-agency research is to develop the baseline climatic and biological data, models, and tools to predict the cumulative impact of climate change on habitats and ecosystem services in a series of coastal estuaries of the Pacific Northwest. In collaboration with other federal, state, and non-governmental...
thumbnail
There are approximately 2,000 species of migratory birds worldwide, and over 300 of those can be found in North America. Changing climate conditions pose challenges for many migratory birds and their responses to these challenges can depend on their biology. To illustrate these impacts, a board game, called Migration Mismatch, was developed to help elementary school students understand these challenges. Migration Mismatch can help students build their understanding of biological processes and how species, birds in this case, interact with their environment. The game provides an interactive element to learning about adaptations of different bird species to environmental changes and provides a link to birds they may...
thumbnail
Inland fishes provide important ecosystem services to communities worldwide and are especially vulnerable to the impacts of climate change. Fish respond to climate change in diverse and nuanced ways, which creates challenges for practitioners of fish conservation, climate change adaptation, and management. Although climate change is known to affect fish globally, a comprehensive online, public database of how climate change has impacted inland fishes worldwide and adaptation or management practices that may address these impacts does not exist. We conducted an extensive, systematic primary literature review to identify peer-reviewed journal publications describing projected and documented examples of climate change...
thumbnail
The USGS National Climate Change and Wildlife Science Center (NCCWSC), as part of the work of the Interagency Land Management Adaptation Group (ILMAG), initiated a project in 2013 to develop plans for a searchable, public registry on climate change vulnerability assessments. Member agencies from the USGCRP Adaptation Science Work Group, the Association of Fish and Wildlife Agencies (AFWA), and several NGO’s also contributed. Vulnerability assessments are important for identifying resources that are most likely to be affected by climate change and providing insights on why certain resources are vulnerable. Consequently, they provide valuable information for informing climate change adaptation planning. CRAVe allows...
thumbnail
Fire and hydrology can be significant drivers of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to disturbance. New methods are needed to understand the vulnerability and resilience of different landscapes to permafrost degradation. This project uses remote sensing, geophysical, and other field-based observations to reveal details of both near-surface (<1 m) and deeper (>1 m) permafrost characteristics over multiple scales. This LandCarbon project currently supports the NASA ABoVE project, 'Vulnerability of inland waters and the aquatic...
thumbnail
Description of Work USGS will conduct monthly samples of benthic invertebrates, zooplankton, and water quality as well as seasonal sampling of fish and fish diets. This project supports lower trophic sampling in Lake Erie and understanding food webs. An emphasis will be collecting samples from a nearshore to offshore design.
Description of Work At two of Wisconsin's Areas of Concern (AOCs) on Lake Michigan, the Sheboygan River AOC and Milwaukee Estuary AOC, the USGS will assess whether sediment toxicity from PCBs, PAHs, selected metals, ammonia, or dissolved oxygen is present at acutely toxic or chronically toxic concentrations using sediment toxicity tests conducted with amphipods and midges. Study planning and literature search have been completed. Sediment was collected in October 2016 from sites in the two AOCs and sites in two non-AOC comparison sites. Assesments will be done at two additional sites: Kewaunee River and Oak Creek. Laboratory toxicity tests and chemical analyses are in progress, including sediment toxicity testing...
Categories: Project; Tags: Staging
thumbnail
The Great Dismal Swamp (GDS) project is an application of USGS LandCarbon, at the US Fish and Wildlife Service's (FWS) Great Dismal Swamp National Wildlife Refuge (NWR), and is designed to produce local-scale carbon estimates (including fluxes, ecosystem balance, and long-term sequestration rate) to include in an ecosystem service assessment in support of Department of Interior (DOI) land management activities. The project will improve the understanding of the effects of past drainage, logging, farming, and management on carbon sequestration and fire risk in peatlands. Broad Science Questions: How are ecosystem services (including carbon sequestration, wildlife viewing, water quality, and others) impacted by management...
thumbnail
This research focuses on understanding processes controlling temporal and spatial variability in aquatic carbon fluxes in headwater streams. Headwater streams are areas of active carbon cycling because of steep topographic gradients, complex soil and vegetation patterns, and an abundance of small lakes and streams. The project will combine information from the following major components: High-frequency measurements of aquatic carbon fluxes using in-stream sensors will provide information on temporal dynamics at unprecedented resolution. A geostatistical model will be developed to characterize relations between landscape type (e.g., wetlands, forest, tundra) and aquatic C dynamics and fluxes. Variations in fluxes...
a) Developing defensible conceptual models of processes influencing the mass transfer of inorganic contaminants between aqueous and solid phases. b) Translating conceptual models into quantitative models that can be used to predict the influence of mass-transfer processes on contaminant fate and transport in field applications. c) Developing approaches to obtain parameters required to describe contaminant mass transfer in quantitative fate and transport models that are, to the maximum extent possible, independent of field observations. d) Testing these approaches in laboratory experimental studies, field experimental studies, and field-scale plume characterization studies.


map background search result map search result map Predicting Climate Change Threats to Key Estuarine Habitats and Ecosystem Services in the Pacific Northwest Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) Projecting the Future of Headwater Streams to Inform Management Decisions Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability Cooperative Science and Monitoring Initiative (CSMI) - LAKE ERIE Avian Indicators of Climate Change Based on the North American Breeding Bird Survey Fish and Climate Change (FiCli) Database: Informing Climate Change Adaptation and Management Actions for Freshwater Fishes Great Dismal Swamp Project Headwater C fluxes Alaska permafrost characterization Migration Mismatch: Bird Migration and Phenological Mismatching Creating a North Central Regional Invasive Species and Climate Change (NC RISCC) Management Network Great Dismal Swamp Project Headwater C fluxes Cooperative Science and Monitoring Initiative (CSMI) - LAKE ERIE Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Creating a North Central Regional Invasive Species and Climate Change (NC RISCC) Management Network A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Projecting the Future of Headwater Streams to Inform Management Decisions Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Alaska permafrost characterization Avian Indicators of Climate Change Based on the North American Breeding Bird Survey Migration Mismatch: Bird Migration and Phenological Mismatching Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability Fish and Climate Change (FiCli) Database: Informing Climate Change Adaptation and Management Actions for Freshwater Fishes