Skip to main content
Advanced Search

Filters: partyWithName: Jeffrey J Whicker (X)

3 results (30ms)   

View Results as: JSON ATOM CSV
Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed...
Soil erosion is an important process in dryland ecosystems, yet measurements and comparisons of wind and water erosion within and among such ecosystems are lacking. Here we compare wind erosion and transport �eld measurements with water erosion and transport from rainfall-simulation for three different semi-arid ecosystems: a shrubland near Carlsbad, New Mexico; a grassland near Denver, Colorado; and a forest near Los Alamos, New Mexico. In addition to comparing erosion loss from an area, we propose a framework for comparing horizontal mass transport of wind- and water-driven materials as a metric for local soil redistribution. Median erosion rates from wind for vertical mass flux measurements (g m−2 d−1)...
Soil erosion is driven by not only aeolian but also fluvial transport processes, yet these two types of processes are usually studied independently, thereby precluding effective assessment of overall erosion, potential interactions between the two drivers, and their relative sensitivities to projected changes in climate and land use. Here we provide a perspective that aeolian and fluvial transport processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian–fluvial interactions. We build on previous literature...