Skip to main content
Advanced Search

Filters: Date Range: {"choice":"year"} (X) > Tags: {"type":"Theme","scheme":"USGS Thesaurus","name":"human impacts"} (X) > partyWithName: Peter S Coates (X)

4 results (12ms)   

View Results as: JSON ATOM CSV
thumbnail
Rasters representing median raven density estimates, calculated from approximately 28,000 raven point count surveys conducted between 2009 and 2019. Estimates were the result of a Bayesian hierarchical distance sampling model, using environmental covariates on detection and abundance.
thumbnail
Greater sage-grouse (Centrocercus urophasianus) are at the center of state and national land use policies largely because of their unique life-history traits as an ecological indicator for health of sagebrush ecosystems. These data represent an updated population trend analysis and Targeted Annual Warning System (TAWS) for state and federal land and wildlife managers to use best available science to help guide current management and conservation plans aimed at benefitting sage-grouse populations range-wide. This analysis relied on previously published population trend modeling methodology from Coates and others (2021, 2022) and includes population lek count data from 1960-2023. Bayesian state-space models estimated...
thumbnail
We combined approximately 28,000 raven point count surveys with data from more than 900 sage-grouse nests between 2009 and 2019 within the Great Basin, USA. We modeled variation in raven density using a Bayesian hierarchical distance sampling approach with environmental covariates on detection and abundance. Concurrently, we modeled sage-grouse nest survival using a hierarchical frailty model as a function of raven density as well as other environmental covariates that influence risk of failure. Raven density commonly exceeded more than 0.5 ravens per square kilometer and increased at low relative elevations with prevalent anthropogenic development and/or agriculture. Reduced sage-grouse nest survival was strongly...
thumbnail
These rasters are the result of calculating the difference in Greater Sage-grouse nest survival after a simulated reduction of raven density to 0.1 ravens per square kilometer. The difference in nest survival represents spatial variation in potential to improve nest survival by reducing raven impacts. The extent of each individual raster is the extent of the field site at which sage-grouse nest observations were recorded.


    map background search result map search result map Trends and a Targeted Annual Warning System for Greater Sage-Grouse in the Western United States (ver. 3.0, February 2024) Data to Support Hierarchical Models and Decision Support Maps to Guide Management of Subsidized Avian Predator Densities Estimates of Raven Impacts on Greater Sage-Grouse Nest Survival Delineated by Field Site in California, Nevada, and Idaho (2009 - 2019) Median Estimates of Raven Density in California, Nevada, and Idaho (2012 - 2019) Data to Support Hierarchical Models and Decision Support Maps to Guide Management of Subsidized Avian Predator Densities Estimates of Raven Impacts on Greater Sage-Grouse Nest Survival Delineated by Field Site in California, Nevada, and Idaho (2009 - 2019) Median Estimates of Raven Density in California, Nevada, and Idaho (2012 - 2019) Trends and a Targeted Annual Warning System for Greater Sage-Grouse in the Western United States (ver. 3.0, February 2024)