Skip to main content
Advanced Search

Filters: System Type: Data Release (X) > Categories: NOT Data Release - In Progress (X) > Tags: {"scheme":"Common geographic areas","name":"arizona"} (X) > partyWithName: Water Resources (X) > Types: OGC WMS Layer (X)

21 results (71ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset contains absolute-gravity measurements made using an A-10 absolute gravity meter (Micro-g Lacoste, Inc.) in 2019 in Pinal County, Arizona. Measurements were made at a total of 19 different stations used by the Arizona Department of Water Resources (ADWR) to monitor aquifer-storage changes. Data are presented in tabular and spatial vector (point) form, including relevant parameters used for processing. Data were output by g software (Micro-g Lacoste, Inc.) version 9.12.04.23. A correction for laser-frequency drift was applied, based on regular calibration of the HeNe laser used in the A-10 against an iodine-stabilized laser.
thumbnail
Observations of irrigated agricultural land within the Willcox Groundwater Basin in Arizona. Digitized field boundaries were used to locate crops for in situ verification twice in 2022; crop verification occurred first on May 17th and again on August 26th. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2021 imagery for Arizona and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified...
thumbnail
Observations of irrigated agricultural land within the San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin. Digitized field boundaries were used to locate crops for in situ verification twice in 2022; crop verification occurred first on May 18th and again on August 24th. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2021 imagery for Arizona and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were...
thumbnail
Observations of irrigated agricultural land within the Lower San Pedro Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 14th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle...
thumbnail
The San Juan River is a major water source for communities in the Four Corners region of the United States (parts of Colorado, Arizona, New Mexico, Utah) and is a vital source of water for the Navajo Nation. The Navajo Nation Environmental Protection Agency (NNEPA) periodically samples surface water on the Navajo Nation and has found that some elements exceed NNEPA surface water standards (the upper limits of an element for consumption or other use of water). Constituents of concern are substances that could be harmful if present in sufficient quantities, and it is important to monitor the concentrations of these substances in the environment. In the San Juan River, constituents of concern include metals detected...
The spatial extents of verified irrigated lands were compiled from various federal and state sources across the nation and combined into a single Geographic Information System (GIS) geodatabase for the purpose of model training and validation. In cooperation with U.S. Geological Survey (USGS), researchers at the University of Wisconsin (UW) generated a nation-wide map of irrigated lands using remote-sensing techniques that will be incorporated into future irrigation water-use models. The verified spatial data varies in scope, accuracy, and time period represented, but in general represents GIS coverages (polygons) of agricultural land irrigated for at least some period during 2002–17. Data from 14 states were provided...
thumbnail
Controlled source audio-frequency magnetotellurics (CSAMT) data were collected in the Big Chino Valley and Paulden areas, Yavapai County, Arizona, to better understand the hydrogeology of the area. CSAMT data provide vertical cross-section (profile) data about the resistivity of the subsurface, which may be related to lithologic boundaries and (or) grain-size distribution in the subsurface. CSAMT involves transmitting a current at various frequencies in one location, and measuring resistivity differences between electrodes spaced along a receiver line several kilometers from the transmitter. Data were collected using a GGT-30 transmitter and GDP32-II receiver (Zonge international. Inc.). Data processing and inversions...
thumbnail
Airborne electromagnetic (AEM) and magnetic survey data were collected during March 2018 along 1,637 line line-kilometers over the western Hualapai Indian Reservation and surrounding areas. The survey was conducted as part of a study of the groundwater resources of the Truxton basin and Hualapai Plateau. The survey was designed to improve the understanding of the geometry of the major hydrostratigraphic contacts of the study area. Data were acquired by SkyTEM ApS with the SkyTEM 312 time-domain helicopter-borne electromagnetic system together with a Geometrics G822A cesium vapor magnetometer. The survey was flown at a nominal flight height of 30 meters (m) above terrain along block-style lines with a nominal spacing...
thumbnail
This dataset contains absolute-gravity measurements made using an A-10 absolute gravity meter (Micro-g Lacoste, Inc.) between 2009 and 2017 in the Big Chino Subbasin, Yavapai County, Arizona. Measurements were made about 3 times per year at a total of 33 different stations. Data are presented in tabular form, including relevant parameters used for processing. Data were output by g software (Micro-g Lacoste, Inc.) version 9.12.04.23. A correction for laser-frequency drift was applied, based on regular calibration of the HeNe laser used in the A-10 against an iodine-stabilized laser. A second soil-moisture correction was applied based on satellite soil-moisture measurements, an infiltration model, and the elevation...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2021 on May 20th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2021 and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992...
thumbnail
Human factors that influence water availability in the Basin were discovered by reviewing hundreds of published literature items and articles from the literature following an extensive keyword search. The different factors were drawn from reviewing the literature, and datasets to support the factor were researched across open data catalogs and the world wide web. Data related to the Human Factors project water availability sectors of agriculture, industrial, municipal, and those related to ecosystem services, tourism, or other uses can be found here. Reproducible R scripts used to pull data or process data can be found within the section for the sector itself. Reproducible R scripts used to manage the literature...
thumbnail
Groundwater samples were collected from 60 public supply wells in the Colorado Plateaus principal aquifer. Water quality evaluations of groundwater for drinking water at public supply depths were made with the purpose of summarizing the current quality of source water (that is, untreated water) from public supply wells using two types of assessments; (1) status: an assessment that describes the current quality of the groundwater resource, and (2) understanding: an evaluation of the natural and human factors affecting the quality of groundwater, including an explanation of statistically significant associations between water quality and selected explanatory factors. To provide context for water-quality data, constituent...
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 16th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle...
thumbnail
Observations of irrigated agricultural land within the Sacramento Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2021 on May 21st; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2021 and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992...
Observations of irrigated agricultural land within the Butler Valley Groundwater Basin in Arizona. Crops were verified in situ twice in 2020 first on March 11th and again on August 11th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using...
Observations of irrigated agricultural land within the Willcox Groundwater Basin in Arizona. Crops were verified in situ twice in 2020, first on May 20th and again on August 12th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the...
thumbnail
This data release contains total dissolved solids (TDS) concentrations and specific conductance (SC) measurements collected at surface-water monitoring locations and groundwater monitoring wells within the Upper Colorado River Basin (UCRB) between 1894 and 2022. Discrete TDS and SC results were obtained from the Water Quality Portal (WQP). Continuous SC monitoring results were obtained from the USGS National Water Information System (NWIS). The data set includes 127,294 TDS results that were collected at 12,339 sites between 1900 and 2022, and 705,918 SC results that were collected at 19,630 sites between 1894 and 2022. The SC results represented 244,784 discrete measurements at 19,625 sites and 461,134 mean daily...
Observations of irrigated agricultural land within the Harquahala Irrigation Non-Expansion Area Groundwater Basin in Arizona. Crops were verified in situ three times in 2020 on first on March 11th, then on May 27th, and finally on August 11th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season...
Observations of irrigated agricultural land within the Sacramento Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 16th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle...
Observations of irrigated agricultural land within the Ranegras Plain Groundwater Basin in Arizona. Crops were verified in situ three times in 2020 first on March 11th, then on May 27th, and finally on August 11th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals...


map background search result map search result map Repeat microgravity data from the Big Chino Subbasin, 2001-2017, Yavapai County, Arizona Controlled source audio-frequency magnetotellurics (CSAMT) data from the Big Chino Wash and Paulden areas, Yavapai County, Arizona Airborne electromagnetic and magnetic survey, western Hualapai Indian Reservation near Grand Canyon West and Peach Springs, Arizona, 2018 Absolute gravity data from Pinal County, Arizona, 2019 Data for Groundwater-Quality and Select Quality-Control Data for the Colorado Plateaus Principal Aquifer Verified Irrigated Agricultural Lands for the United States, 2002–17 Human Factors of Water Availability in the Upper Colorado River Basin Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Butler Valley Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Ranegras Plain Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Sacramento Valley Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Lower San Pedro Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Harquahala Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Sacramento Valley Groundwater Basin, Arizona for 2021 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2021 Estimated crop irrigation water use withdrawals in San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2022 Compilation of total dissolved solids concentrations and specific conductance measurements in the Upper Colorado River Basin, 1894 – 2022 Scanning electron microscopy data from sediments collected in ephemeral channels, Four Corners region, USA, 2021-2022 Estimated crop irrigation water use withdrawals in Butler Valley Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Ranegras Plain Groundwater Basin, Arizona for 2020 Controlled source audio-frequency magnetotellurics (CSAMT) data from the Big Chino Wash and Paulden areas, Yavapai County, Arizona Estimated crop irrigation water use withdrawals in Harquahala Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2020 Repeat microgravity data from the Big Chino Subbasin, 2001-2017, Yavapai County, Arizona Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2021 Estimated crop irrigation water use withdrawals in San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Lower San Pedro Groundwater Basin, Arizona for 2020 Airborne electromagnetic and magnetic survey, western Hualapai Indian Reservation near Grand Canyon West and Peach Springs, Arizona, 2018 Absolute gravity data from Pinal County, Arizona, 2019 Scanning electron microscopy data from sediments collected in ephemeral channels, Four Corners region, USA, 2021-2022 Human Factors of Water Availability in the Upper Colorado River Basin Data for Groundwater-Quality and Select Quality-Control Data for the Colorado Plateaus Principal Aquifer Compilation of total dissolved solids concentrations and specific conductance measurements in the Upper Colorado River Basin, 1894 – 2022 Verified Irrigated Agricultural Lands for the United States, 2002–17