Skip to main content
Advanced Search

Filters: System Type: Data Release (X) > Categories: NOT Data Release - In Progress (X) > Tags: {"scheme":"Geographic Names Information System"} (X) > partyWithName: Nebraska Water Science Center (X)

99 results (23ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tags (with Scheme=Geographic Names Information System)
View Results as: JSON ATOM CSV
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital spatial data set consists of the aquifer base elevation contours (50-foot contour interval) for part of the High Plains aquifer in the central United States. This subset of the High Plains aquifer covers the Republican River Basin in Nebraska, Kansas, and Colorado upstream from the streamflow station on the Republican River near Hardy, Nebraska, near the Kansas/Nebraska border. In Nebraska, the digitized contours extend...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Specific yield ranges from near zero to 30 percent (Gutentag and others, 1984). This data set was generated in ESRI ArcInfo Workstation Version...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2011. This digital...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digital water-level-change contours for the High Plains aquifer in the central United States, predevelopment (about 1950) to 2007. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota,...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, used two surface geophysical techniques, capacitively coupled and direct-current continuous resistivity profiling, to map near-surface lithologies beneath the Interstate and Tri-State Canals in the spring and summer of 2004. This coverage represents the average electrical resistivity of sediments within the upper 8 meters below selected parts...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The U.S. Geological Survey and its partners have collaborated to complete airborne geophysical surveys for areas of the North and South Platte River valleys and Lodgepole Creek in western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of selected areas to help improve the understanding of groundwater-surface-water relationships to be used in water management decisions. Frequency-domain (2008...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This arc and point data set contains streamflow-measurement sites and reaches indicating streamflow gain or loss under base-flow conditions along Republican River tributaries in Dundy and Chase Counties, Nebraska during October 6 to 8, 1975 (U.S. Geological Survey, 1977). The streamflow measurements were made to obtain data on ground-water/surface-water interaction. Flow was observed visually to be zero, was measured, or was estimated...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This arc and point data set contains streamflow-measurement sites and reaches indicating streamflow gain or loss under base-flow conditions along Republican River tributaries in Nebraska during April 28 to May 1, 1980 (U.S. Geological Survey, 1981). The streamflow measurements were made to obtain data on ground-water/surface-water interaction. Flow was observed visually to be zero, was measured, or was estimated at 147 sites. The...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents water-level change in the High Plains aquifer of the United States from 2005 to 2009, in feet. The High Plains aquifer underlies 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer's saturated thickness ranges from near zero to about 1,200 feet (Weeks and Gutentag, 1981). Water-level declines...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents the saturated thickness of the High Plains aquifer of the United States, 2009, in feet. The High Plains aquifer underlies approximately 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer's saturated thickness ranges from near zero to about 1,200 feet (Weeks and Gutentag, 1981). Water-level...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
An integrated hydrologic-flow model, called the Central Platte Integrated Hydrologic Model, was constructed using the MODFLOW-One-Water Hydrologic Model code with the Newton solver. This code integrates climate, landscape, surface water, and groundwater-flow processes in a fully coupled approach. This study provided the Central Platte Natural Resources District (CPNRD) with an advanced numerical modeling tool to assist with the update of their Groundwater Management Plan by providing them information on modeled future GW levels under different climate scenarios and management practices. This tool will allow the CPNRD to evaluate other scenarios as management changes in the future. A predevelopment model simulated...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This arc and point data set contains streamflow-measurement sites and reaches indicating streamflow gain or loss under base-flow conditions along the Republican River and tributaries in Nebraska during October 10 to 18, 1978 (U.S. Geological Survey, 1980). The streamflow measurements were made to obtain data on ground-water/surface-water interaction. Flow was observed visually to be zero, was measured, or was estimated at 254 sites....
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The U.S. Geological Survey and its partners have collaborated to complete airborne geophysical surveys for areas of the North and South Platte River valleys and Lodgepole Creek in western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of selected areas to help improve the understanding of groundwater-surface-water relationships to be used in water management decisions. Frequency-domain (2008...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The U.S. Geological Survey and its partners have collaborated to complete airborne geophysical surveys for areas of the North and South Platte River valleys and Lodgepole Creek in western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of selected areas to help improve the understanding of groundwater-surface-water relationships to be used in water management decisions. Frequency-domain (2008...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital data set consists of contours for 1980 water-level elevations for the High Plains aquifer in the central United States. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 106 degrees west longitude. The outcrop area covers 174,000 square miles and is present in Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming....
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The U.S. Geological Survey, in cooperation with The Central Nebraska Public Power and Irrigation District (CNPPD), conducted a study that used bathymetric and topographic surveying in conjunction with Geographical Information Systems techniques to determine the 2003 physical shape and storage capacity, as well as the change in storage capacity of Lake McConaughy that occurred over 62 years. By combining the bathymetric and topographic...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. A RESON SeaBat™ 7125 multibeam echosounder in conjunction with an Applanix Position Orientation Solution for Marine Vessels (POS MV™) WaveMaster system motion sensor, HYPACK®/HYSWEEP® navigation software, and Ashtech Z-Xtreme GPS receivers or Trimble R8 receivers was used to survey the Missouri River bed at 15 pipeline crossings at four different locations, at three power plant locations, and at one transmission tower during the...


map background search result map search result map DS-777 Average Annual Precipitation Data, 2000 to 2009, in inches estimated from an Inverse-Distance-Weighted (IDW) interpolation, for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Potential Evapotranspiration, 2000 to 2009, in inches estimated from the National Weather Service (NWS) Snow Accumulation and Ablation (SNOW-17) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Irrigation Withdrawals, 2000 to 2009, in inches estimated from the Soil Water Balance (SWB) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Digital map of the elevation of the base of the High Plains Aquifer in the Republican River Basin upstream of Hardy, Nebraska, in parts of Nebraska, Kansas, and Colorado Streamflow gain/loss in the Republican River Basin, Nebraska, October 1975 Streamflow gain/loss in the Republican River Basin, Nebraska, October 1978 Streamflow gain/loss in the Republican River Basin, Nebraska, April to May 1980 Digital map of water levels in 1980 for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Missouri River bed elevations near north Omaha, Nebraska coal power plant surveyed during 2011 flood on October, 14 Base Contours of the principal aquifer for portions of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska Area of aquifer contours enhanced with airborne electromagnetic (AEM) surveys of the principal aquifer for portions of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska Elevation Control Points to reinterpret the base of aquifer contours after airborne electromagnetic (AEM) surveys of the principal aquifer for portions of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2007 Saturated thickness, High Plains aquifer, 2009 Specific yield, High Plains aquifer Water-level change, High Plains aquifer, 2005 to 2009 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2011 Elevation point file for Lake McConaughy, Nebraska Capacitively coupled average resistivity of the Interstate and Tri-State Canals within Sioux and Scotts Bluff Counties in western Nebraska and Goshen County in eastern Wyoming MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan Missouri River bed elevations near north Omaha, Nebraska coal power plant surveyed during 2011 flood on October, 14 Capacitively coupled average resistivity of the Interstate and Tri-State Canals within Sioux and Scotts Bluff Counties in western Nebraska and Goshen County in eastern Wyoming Elevation point file for Lake McConaughy, Nebraska Area of aquifer contours enhanced with airborne electromagnetic (AEM) surveys of the principal aquifer for portions of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska Elevation Control Points to reinterpret the base of aquifer contours after airborne electromagnetic (AEM) surveys of the principal aquifer for portions of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska Streamflow gain/loss in the Republican River Basin, Nebraska, October 1975 Streamflow gain/loss in the Republican River Basin, Nebraska, April to May 1980 Base Contours of the principal aquifer for portions of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska Streamflow gain/loss in the Republican River Basin, Nebraska, October 1978 MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan Digital map of the elevation of the base of the High Plains Aquifer in the Republican River Basin upstream of Hardy, Nebraska, in parts of Nebraska, Kansas, and Colorado Digital map of water levels in 1980 for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2007 Saturated thickness, High Plains aquifer, 2009 Specific yield, High Plains aquifer Water-level change, High Plains aquifer, 2005 to 2009 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2011 DS-777 Average Annual Precipitation Data, 2000 to 2009, in inches estimated from an Inverse-Distance-Weighted (IDW) interpolation, for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Irrigation Withdrawals, 2000 to 2009, in inches estimated from the Soil Water Balance (SWB) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Potential Evapotranspiration, 2000 to 2009, in inches estimated from the National Weather Service (NWS) Snow Accumulation and Ablation (SNOW-17) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming