Skip to main content
Advanced Search

Filters: System Type: Data Release (X) > Categories: NOT Data Release - In Progress (X) > Tags: {"scheme":"ISO 19115 Topic Category","name":"elevation"} (X) > Extensions: Shapefile (X)

13 results (111ms)   

View Results as: JSON ATOM CSV
thumbnail
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were recorded with a Triton SB-Logger.
thumbnail
This data set contains two sets of measured water-level data collected on and near Offutt Air Force Base near Bellevue, Nebraska. Surface-water and groundwater-level data were collected for two synoptic water-level surveys completed in late summer of 2020 and in spring 2021. The elevations of surface-water features were surveyed with a rover receiver using a real-time network (RTN), where the rover receiver receives real-time position corrections from a central server through a mobile wireless-fidelity (Wi-Fi) hotspot linked to the rover receiver. Data collection procedures ensured that positions and elevations achieved a U.S. Geological Survey (USGS) Level-III survey accuracy and surveyed surface-water elevations...
thumbnail
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in March and April 2007, offshore San Mateo County, California. Data were collected aboard the R/V Fulmar during field activity F-02-07-NC. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were recorded with a Triton SB-Logger.
thumbnail
On August 25, 2020, the U.S. Geological Survey conducted a bathymetry survey of a 550 meter long reach of the Black River near Great Bend, New York. The study reach began approximately 1,000 meters upstream from the State Route 26 bridge in Great Bend, New York. Depth data were collected primarily with a 1,200 kilohertz Teledyne RD Instruments RioPro acoustic Doppler current profiler (ADCP) with position data from differential global navigation satellite system (GNSS) Hemisphere V102 DGPS antenna (any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government). Water surface elevations were established using real-time kinematic (RTK) GNSS surveys;...
thumbnail
On October 13, 2020 a survey of Upper Letts Lake was conducted where both bathymetric and terrestrial lidar data were collected. Additionally, six bed material samples and three core samples were collected to understand the characterization of the grain-size of the lake bed. Survey data were merged with an additional lidar dataset from the USGS 3DEP program to create digital elevation model (DEM). The DEM was used to update the stage-storage and stage-surface area tables for the reservoir. This data release provides the following data sets; 1) bathymetric and terrestrial elevation data, 2) Combined bathymetric and 3DEP DEM, 3) stage-storage and stage-surface area tables from DEM, and 4) bed material grain-size and...
thumbnail
Elevation distribution in the Assateague Island National Seashore (ASIS) salt marsh complex and Chincoteague Bay is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
Topography provides information about the structural controls of the Great Basin and therefore information that may be used to identify favorable structural settings for geothermal systems. Specifically, local relative topography gives information about locations of faults and fault intersections relative to mountains, valleys, or at the transitions between. As part of U.S. Geological Survey efforts to engineer features that are useful for predicting geothermal resources, we construct a detrended elevation map that emphasizes local relative topography and highlights features that geologists use for identifying geothermal systems (i.e., providing machine learning algorithms with features that may improve predictive...
thumbnail
The Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the Massachusetts coast. Seventy-six maps were produced in 1997 depicting a statistical analysis of shoreline change on ocean-facing shorelines from the mid-1800s to 1978 using multiple data sources. In 2001, a 1994 shoreline was added. More recently, in cooperation with CZM, the U.S. Geological Survey (USGS) delineated a new shoreline for Massachusetts using color aerial ortho-imagery from 2008 to 2009 and topographic lidar data collected in 2007. This update included a marsh shoreline, which was defined to be the tonal difference between low- and high-marsh seen in ortho-photos....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Bourne, CMGP, Chatham, Coastal and Marine Geology Program, Duxbury, All tags...
thumbnail
Lifespan of salt marshes in New York are calculated using conceptual marsh units defined by Defne and Ganju (2018) and Welk and others (2019, 2020a, 2020b, 2020c). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
Elevation distribution in the Fire Island National Seashore and Central Great South Bay salt marsh complex is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and Central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service...
thumbnail
The Ozark Plateau aquifer system stretches across approximately 70,000 square miles (mi2) of Arkansas, Missouri, Kansas and Oklahoma, and is composed of many hydrogeologic units, such as the Boone aquifer and the Roubidoux aquifer. However, this data release is focused on only 11,000 mi2 in northern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. The Boone aquifer covers approximately 10,700 mi2 of this area, and the Roubidoux aquifer covers the 11,000 mi2 area entirely. These aquifers are mostly made of Mississippian-aged and Ordovician-aged carbonate rock, and serve as the main sources of fresh groundwater in northeastern Oklahoma (Imes and Emmett, 1994). In 2017, the U.S. Geological...
thumbnail
Lifespan of salt marshes in Massachusetts (MA) are calculated using conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including Massachusetts salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and...
thumbnail
The sediment-based lifespan of salt marsh units in Assateague Island National Seashore (ASIS) and Chincoteague Bay is shown for conceptual marsh units defined by Defne and Ganju (2018). The lifespan represents the timescale by which the current sediment mass within a marsh parcel can no longer compensate for sediment export and deficits induced by sea-level rise. The lifespan calculation is based on vegetated cover, marsh elevation, sediment supply, and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level rise scenarios are present day estimates corresponding to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) by 2100 from Sweet and others (2017). Through scientific efforts...


    map background search result map search result map Marsh shorelines of the Massachusetts coast from 2013-14 topographic lidar data Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Elevation of marsh units in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Chirp and minisparker seismic-reflection data of field activity F-02-07-NC collected offshore San Mateo County, California, from 2007-03-22 to 2007-04-06 Data used to describe hydrogeologic units and create contour maps and cross sections of the Boone and Roubidoux Aquifers, northeastern Oklahoma Geospatial bathymetry dataset for the Black River near Great Bend, New York, 2020 Stage-Storage and Bed Material Data from the 2020 Upper Letts Lake Survey, California Lifespan of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Water-surface and groundwater-level elevations on and near Offutt Air Force Base, Nebraska, summer 2020 and spring 2021 Lifespan of Massachusetts salt marsh units Maps of elevation trend and detrended elevation for the Great Basin, USA Lifespan of marsh units in New York salt marshes Geospatial bathymetry dataset for the Black River near Great Bend, New York, 2020 Stage-Storage and Bed Material Data from the 2020 Upper Letts Lake Survey, California Water-surface and groundwater-level elevations on and near Offutt Air Force Base, Nebraska, summer 2020 and spring 2021 Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Elevation of marsh units in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Chirp and minisparker seismic-reflection data of field activity F-02-07-NC collected offshore San Mateo County, California, from 2007-03-22 to 2007-04-06 Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Lifespan of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Marsh shorelines of the Massachusetts coast from 2013-14 topographic lidar data Lifespan of Massachusetts salt marsh units Lifespan of marsh units in New York salt marshes Data used to describe hydrogeologic units and create contour maps and cross sections of the Boone and Roubidoux Aquifers, northeastern Oklahoma Maps of elevation trend and detrended elevation for the Great Basin, USA