Skip to main content
Advanced Search

Filters: Tags: {"scheme":"Geographic Names Information System (GNIS)","name":"bonanza creek"} (X) > Types: Shapefile (X) > partyWithName: Geology, Geophysics, and Geochemistry Science Center (X) > partyWithName: U.S. Geological Survey (X)

4 results (28ms)   

View Results as: JSON ATOM CSV
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Electrical resistivity tomography (ERT) measurements were made along transects 110 - 222 m in length to quantify subsurface permafrost characteristics. ERT transects were collected across a fireline boundary within the Bonanza Creek Long Term Ecological Research (LTER) site where repeat measurements have been made since 2014; across and adjacent to two thermokarst lakes, Vault Lake and Goldstream Lake; and along two profiles at the North Star golf course...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). In April 2018, seven boreholes were emplaced to depths of 2.3-2.5 meters (m) to allow for repeat logging with downhole nuclear magnetic resonance (NMR) to quantify the spatial and temporal variations in unfrozen water content within active-layer and permafrost soils. NMR data were collected on ten separate occasions between April 2018 and October 2020. In June...
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Electrical resistivity tomography (ERT) measurements were made along transects 110-222 meters (m) in length to quantify subsurface permafrost characteristics. ERT transects were collected across a fireline boundary within the Bonanza Creek Long Term Ecological Research (LTER) site where repeat measurements have been made since 2014; across and adjacent to two thermokarst lakes, Vault Lake and Goldstream Lake; and along two profiles at the North Star golf...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). Nine instrument monitoring sites (APEX1-APEX9) were established in April 2018. To quantify permafrost and thaw zone characteristics along the instrumented gradient, electrical resistivity tomography (ERT) data were collected in August 2018 along four 82 meter (m)-long transects between select sites: APEX1-3, APEX5-3, APEX5-7, and APEX6-8. Data were collected...


    map background search result map search result map Permafrost characterization at the Alaska Peatland Experiment (APEX): Geophysical and related field data collected from 2018-2020 APEX Electrical Resistivity Tomography (ERT) Data and Models from 2018 Alaska permafrost characterization: Geophysical and related field data collected in 2021 Alaska permafrost characterization: Electrical Resistivity Tomography (ERT) data collected in 2021 Permafrost characterization at the Alaska Peatland Experiment (APEX): Geophysical and related field data collected from 2018-2020 APEX Electrical Resistivity Tomography (ERT) Data and Models from 2018 Alaska permafrost characterization: Geophysical and related field data collected in 2021 Alaska permafrost characterization: Electrical Resistivity Tomography (ERT) data collected in 2021