Skip to main content
Advanced Search

Filters: Tags: {"scheme":"Geographic Names Information System (GNIS)","name":"united states of america"} (X) > partyWithName: U.S. Geological Survey (X) > Extensions: Shapefile (X) > Types: Shapefile (X)

11 results (146ms)   

View Results as: JSON ATOM CSV
thumbnail
The data release encapsulates geospatial data in support of the regional scale study, Coal Geology and Assessment of Coal Resources and Reserves in the Little Snake River coal field and Red Desert assessment area, Greater Green River Basin, Wyoming. The assessment area covers about 2,300 square miles of the Eastern portion of the 15,400 square mile Greater Green River Basin in Southwestern Wyoming. This release includes geospatial data for the study area boundary, depth to coal, thickness of coal, outcrops and reliability. These data were compiled from numerous sources, the primary one being a database of point data that resides in a separate data release.
thumbnail
The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties within the Total Petroleum System, such as source rock, timing, migration pathways, trapping mechanism, and hydrocarbon type. The Assessment Unit boundary is defined geologically as the limits of the geologic...
Categories: Data, pre-SM502.8; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Appalachian Basin, Assessment Unit, Chattanooga Plateau Shale Gas, Chattanooga Plateau Shale Oil, Continuous Assessment Unit, All tags...
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques). For each island there are 8 associated flood mask and flood depth shapefiles: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian). For each island there are 8 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs.
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the Territory of the U.S. Virgin Islands (the islands of Saint Croix, Saint John, and Saint Thomas). For each island there are 8 associated flood mask and flood depth shapefiles: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for American Samoa (the islands of Tutuila, Ofu-Olosega, and Tau). For each island there are 8 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.
thumbnail
This data set compiles the major and trace element chemistry of rock samples collected by the U.S. Geological Survey (USGS) at Bokan Mountain, located in the southern part of Prince of Wales Island, southeastern Alaska. Bokan Mountain was formed by an Early Jurassic peralkaline igneous complex that intruded into lower Paleozoic rocks of the Alexander terrane of southeast Alaska. The pluton and surrounding country rocks host numerous mineral deposits and occurrences, including heavy rare earth element (HREE)-rich pegmatites and felsic dikes, as well as mineral deposits rich in uranium, thorium, HREE, and fluorine. The Ross-Adams mine on Bokan Mountain exploited a uranium-thorium deposit intermittently from the late...
thumbnail
These data represent the extent and spatial distribution of irrigated acreage delineated from maximum Normalized Difference Vegetation Index (NDVI) derived from Landsat scenes in the Walker River Basin, California and Nevada, at five-year intervals from 1975-2010. The field boundaries in this data set are digitized from one-year composite maximum NDVI data derived from atmospherically corrected Landsat 2 Multispectral Scanner (MSS), Landsat 5 MSS, and Landsat 5 Thematic Mapper (TM) scenes. NDVI was calculated from the corrected reflectance data for each selected scene during the growing season (May through early October) and a single, composite image of maximum NDVI values was derived for each 5-year interval. Selecting...
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the State Florida (the Florida Peninsula and the Florida Keys). For each island there are 8 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the Territory of Guam. There are 8 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the State of Hawaii (the islands of Hawaii, Kahoolawe, Kauai, Lanai, Maui, Molokai, Niihau, and Oahu). For each island there are 8 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.


    map background search result map search result map Irrigated Acreage Delineated from Landsat-Derived Maximum Normalized Difference Vegetation Index (NDVI) 1975-2010, Walker River Basin Nevada and California Geochemical analyses of rock samples collected from mineral deposits and intrusions of the Bokan Mountain peralkaline granitic complex, Prince of Wales Island, southeastern Alaska Geospatial Data for Coal Beds in the Little Snake River coal field and Red Desert area, Greater Green River Basin, Wyoming Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for American Samoa (the islands of Tutuila, Ofu-Olosega, and Tau) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the State Florida (the Florida Peninsula and the Florida Keys) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of Guam Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the State of Hawaii (the islands of Hawaii, Kahoolawe, Kauai, Lanai, Maui, Molokai, Niihau, and Oahu) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of the U.S. Virgin Islands (the islands of Saint Croix, Saint John, and Saint Thomas) USGS National and Global Oil and Gas Assessment Project - Sunbury and Chattanooga Shales Assessment Unit Boundaries and Assessment Input Forms Geochemical analyses of rock samples collected from mineral deposits and intrusions of the Bokan Mountain peralkaline granitic complex, Prince of Wales Island, southeastern Alaska Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of Guam Irrigated Acreage Delineated from Landsat-Derived Maximum Normalized Difference Vegetation Index (NDVI) 1975-2010, Walker River Basin Nevada and California Geospatial Data for Coal Beds in the Little Snake River coal field and Red Desert area, Greater Green River Basin, Wyoming Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the State Florida (the Florida Peninsula and the Florida Keys) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the State of Hawaii (the islands of Hawaii, Kahoolawe, Kauai, Lanai, Maui, Molokai, Niihau, and Oahu) USGS National and Global Oil and Gas Assessment Project - Sunbury and Chattanooga Shales Assessment Unit Boundaries and Assessment Input Forms