Skip to main content
Advanced Search

Filters: Tags: {"scheme":"Geographic Names Information System (GNIS)"} (X) > partyWithName: Geology, Minerals, Energy, and Geophysics Science Center (X) > partyWithName: Energy and Minerals (X)

67 results (56ms)   

View Results as: JSON ATOM CSV
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DE-EE0006731) with support from the U.S. Geological Survey's Energy Program.
thumbnail
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DE-EE0006731) with support from the U.S. Geological Survey's Energy Program.
thumbnail
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DE-EE0006731) with support from the U.S. Geological Survey's Energy Program.
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DE-EE0006731) with support from the U.S. Geological Survey's Energy Program.
thumbnail
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DE-EE0006731) with support from the U.S. Geological Survey's Energy Program.
thumbnail
Arsenic (As) toxicity is a global environmental and health problem. There are both natural (eg volcanic activity) and anthropogenic sources of As (eg lead arsenate and copper arsenate were commonly used pesticides in the 1900’s). Aqueous levels of arsenic in the Klamath Basin (CA, OR), which has a volcanic origin, can exceed at some locations both the Oregon Department of Environmental Quality human health water quality criteria (2.1 ug/L) (Sturdevant, 2011) and the US EPA drinking water limit (10 ug/L) (US EPA., 2001). In this study, dissolved concentrations of As, copper (Cu) and lead (Pb) were measured in more than 30 sites within the Klamath Basin between May and October. Results from samples collected between...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DE-EE0006731) with support from the U.S. Geological Survey's Energy Program.
thumbnail
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DE-EE0006731) with support from the U.S. Geological Survey's Energy Program.
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DE-EE0006731) with support from the U.S. Geological Survey's Energy Program.


map background search result map search result map station gv06 station gv08 station gv09 station gv10 station gv12 station gv13 station gv19 station gv20 Dissolved arsenic, copper, and lead concentrations in surface water within the Klamath Basin (ver. 4.0, April 2023) MT across the Southern San Andreas Fault Zone California: station mvx001 MT across the Southern San Andreas Fault Zone California: station mvx006 MT across the Southern San Andreas Fault Zone California: station mvx009 MT across the Southern San Andreas Fault Zone California: station mvx011 MT across the Southern San Andreas Fault Zone California: station mvx012 MT across the Southern San Andreas Fault Zone California: station mvx014 MT across the Southern San Andreas Fault Zone California: station mvx019 MT across the Southern San Andreas Fault Zone California: station mvx022 MT across the Southern San Andreas Fault Zone California: station mvx023 MT across the Southern San Andreas Fault Zone California: station mvx029 MT across the Southern San Andreas Fault Zone California: station mvx032 Dissolved arsenic, copper, and lead concentrations in surface water within the Klamath Basin (ver. 4.0, April 2023)