Skip to main content
Advanced Search

Filters: Tags: {"scheme":"ISO 19115 Topic Category","name":"inlandwaters"} (X) > Tags: {"scheme":"ISO 19115 Topic Category","name":"biota"} (X) > Extensions: Shapefile (X) > Categories: Data (X)

62 results (74ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset represents ease of access to bottomland areas for vegetation treatments. Access may be by road, 4x4 near road, hike in by field crews or requiring overnight camping or raft access. Access is considered for each side of the river separately.
thumbnail
This data set shows the extent of the Colorado River Conservation Planning project bottomland area as delineated by topography and vegetation, The bottomland area is subdivided into 1 km polygons measured from the upstream project boundary. Reach breaks were determined by large topographic shifts and/or tributary junctions by John Dohrenwend. Please see the project report for more details.
thumbnail
This is a model showing general habitat diversity, including both the structural and cover type diversity. See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning for geoprocessing details.
thumbnail
This dataset represents the relative average amount of non-woody cover within 2 ha) of bottomland along the Colorado River from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation...
thumbnail
This dataset represents the variety (unique structural classes: water, bare, herbaceous, short shrubs, medium shrubs, short trees, tall trees) within 1 ha of bottomland areas. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of ground qualities. Due to the "snapshot" nature of the aerial photos,...
thumbnail
This map shows the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: fast water (main channel, secondary channel), and still water types (backwater, isolated pool and tributary channel).
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu. The shapefile attribute information includes the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
Data on 17 metrics of shale gas development in the Pennsylvania portion of the Upper Susquehanna River basin that was collated from a variety of sources and summarized at the upstream catchment scale. Data were also standardized by upstream area and transformed into rank scores based on metric distribution and then summarized into a Disturbance Intensity Index (DII). See Maloney et al. 2018 for detailed descriptions of each data sets and limitations of data. (Maloney, K. O., J. A. Young, S. P. Faulkner, A. Hailegiorgis, E. T. Slonecker, and L. E. Milheim. 2018. A detailed risk assessment of shale gas development on headwater streams in the Pennsylvania portion of the Upper Susquehanna River Basin, U.S.A. Science...
thumbnail
This dataset represents the prevalence of trees as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This map shows stillness of water near bank vegetation within 15 m of the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: main channel, secondary channel, backwater, isolated pool and tributary channel.
thumbnail
This ArcGIS shapefile shows the known locations of beaver dams in the Tualatin Basin. The dam location information was generated by multiple local agencies, groups, and organizations. The local sources had identified the beaver dams between 2011 and 2019. USGS worked with these local sources to combine all data into one inventory.
thumbnail
This dataset represents the diversity of woody cover types (averaged per 1.5 ha) as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of tamarisk (tamarisk penalty) as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of...
thumbnail
This is a habitat suitability model riparian understory species in the Colorado River bottomland in Utah. The model incorporates the density of shrubs, the number of shrub species present, and the stillness of adjacent water.
thumbnail
This dataset represents the presence/absence of non-native, woody and herbaceous cover types in vegetation patches, as mapped from high resolution imagery from 2010. Each type (woody or herbaceous) requires different techniques, equipment and approaches, impacting treatment costs. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of native trees as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of tamarisk as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. photos, this cover layer reflects conditions that existed when the imagery was collected (September, 2010). This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This is a fire risk model for riparian trees on the Colorado River bottomland in Utah. The model incorporates the prevalence of riparian trees and tamarisk, and proximity to human caused ignition sources (campgrounds and roads). See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning, for geoprocessing details.
thumbnail
This data set contains two sets of measured water-level data collected on and near Offutt Air Force Base near Bellevue, Nebraska. Surface-water and groundwater-level data were collected for two synoptic water-level surveys completed in late summer of 2020 and in spring 2021. The elevations of surface-water features were surveyed with a rover receiver using a real-time network (RTN), where the rover receiver receives real-time position corrections from a central server through a mobile wireless-fidelity (Wi-Fi) hotspot linked to the rover receiver. Data collection procedures ensured that positions and elevations achieved a U.S. Geological Survey (USGS) Level-III survey accuracy and surveyed surface-water elevations...


map background search result map search result map Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - Tamarisk Penalty for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Prevalence of Trees for Riparian Overstory Layer Model Conservation Planning for the Colorado River in Utah - Diversity of Woody Structure for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Riparian Understory Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Presence of Still Water Plus 20 m for Riparian Understory Model Conservation Planning for the Colorado River in Utah - Distance to Permanent Water for Rocky Fringe Snakes Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Structural Types of Non-Native Species for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Density of Native Riparian Trees for Fire Risk Model Conservation Planning for the Colorado River in Utah - Density of Tamarisk for Fire Risk Model Conservation Planning for the Colorado River in Utah - Fire Risk Model with Human Ignition Sources Output Data for Colorado River in Utah Shale gas data used in development of the Disturbance Intensity Index for the Pennsylvania portion of the Upper Susquehanna River basin in Maloney et al. 2018 Beaver dam locations in the Tualatin Basin, Oregon, between 2011 and 2019 Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches Water-surface and groundwater-level elevations on and near Offutt Air Force Base, Nebraska, summer 2020 and spring 2021 Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Water-surface and groundwater-level elevations on and near Offutt Air Force Base, Nebraska, summer 2020 and spring 2021 Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Beaver dam locations in the Tualatin Basin, Oregon, between 2011 and 2019 Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - Riparian Understory Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Structural Types of Non-Native Species for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Diversity of Woody Structure for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Prevalence of Trees for Riparian Overstory Layer Model Conservation Planning for the Colorado River in Utah - Tamarisk Penalty for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Density of Tamarisk for Fire Risk Model Conservation Planning for the Colorado River in Utah - Density of Native Riparian Trees for Fire Risk Model Conservation Planning for the Colorado River in Utah - Fire Risk Model with Human Ignition Sources Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Distance to Permanent Water for Rocky Fringe Snakes Model Conservation Planning for the Colorado River in Utah - Presence of Still Water Plus 20 m for Riparian Understory Model Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches Shale gas data used in development of the Disturbance Intensity Index for the Pennsylvania portion of the Upper Susquehanna River basin in Maloney et al. 2018