Skip to main content
Advanced Search

Filters: Tags: {"scheme":"ISO 19115 Topic Category"} (X) > partyWithName: Christopher D. Arp, PhD (X) > partyWithName: Arctic Field Office (X)

15 results (16ms)   

View Results as: JSON ATOM CSV
thumbnail
Watersheds draining the Arctic Coastal Plain (ACP) of Alaska are dominated by permafrostand snowmelt runoff that create abundant surface storage in the form of lakes, wetlands, and beaded streams. These surface water elements compose complex drainage networks that affect aquatic ecosystem connectivity and hydrologic behavior. The 4676 km2 Fishand Creek drainage basin is composed of three watersheds that represent a gradient of theACP landscape with varying extents of eolian, lacustrine, and fluvial landforms. In each watershed, we analyzed 2.5-m-resolution aerial photography, a 5-m digital elevationmodel, and river gauging and climate records to better understand ACP watershed structureand processes. We show that...
thumbnail
Stream physical parameter time series files for six or more beaded streams on the North Slope of Alaska in the Fish Creek Watershed near Nuiqsut. These include time series of water temperature (pool bed and surface and channel runs) and pool stage and correspond stream discharge developed from a rating curve.
thumbnail
Interactions and feedbacks between abundant surface waters and permafrost fundamentally shapelowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceedslake depth and mean annual bed temperatures (MABTs) remain below freezing. However, decliningMIT since the1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity towinter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data.Empirical model experiments suggest that shallow (1m depth) lakes have warmed substantially over the last30years (2.4°C), withMABT above freezing5 of the last 7years.This is incomparison to slower ratesofwarming...
thumbnail
LCC funding for this project helped maintain a network of hydrology monitoring sites in a representative watershed of the Arctic Coastal Plain. The work was conducted within the context of climate change and impending oil and gas activities in the region, the latter of which is the impetus for focusing on the Fish Creek watershed. The project included two monitoring components:1) Beaded Stream & Lake Hydrology Monitoring (dominant habitat type within the watershed): in 6 stream/lake complex watersheds (Redworm, Hannahbear, Blackfish, Crea, Oil, and Bills creeks), continuous water level and temperature (in lakes, streams, and confluences), discrete discharge measurements, and continuous water quality (specific conductivity,...
thumbnail
This project provides a better understanding how linkages among surface-water availability, connectivity, and temperature mediate habitat and trophic dynamics of the Fish Creek Watershed (FCW). These interrelated processes form a shifting mosaic of freshwater habitats across the landscape that can be classified, mapped, understood, and modeled in response to past and future climate and land-use change in a spatial and temporal context. Developing scenarios of freshwater habitat change in this context provides managers and scientists with a flexible template to evaluate a range of potential responses to climate and land-use change. Applying this approach in the FCW is made feasible because of the availability of...
thumbnail
Lakes are dominant and diverse landscapefeatures in the Arctic, but conventional land coverclassification schemes typically map them as a singleuniform class. Here, we present a detailed lake-centricgeospatial database for an Arctic watershed in northernAlaska. We developed a GIS dataset consisting of 4362lakes that provides information on lake morphometry,hydrologic connectivity, surface area dynamics,surrounding terrestrial ecotypes, and other importantconditions describing Arctic lakes. Analyzing thegeospatial database relative to fish and bird survey datashows relations to lake depth and hydrologic connectivity,which are being used to guide research and aid in themanagement of aquatic resources in the NationalPetroleum...
thumbnail
The Arctic Coastal Plain (ACP) of northern Alaskaconsists of an extremely low gradient, lake-richlandscape that is characterized by a complex networkof aquatic habitats and surface features stronglyinfluenced by permafrost dynamics. Much is unknownabout the form, function, and ecological conditions inthis unique hydrologic setting. Amplified climatechange and landscape responses in the Arctic furthercomplicate the capacity to separate natural variabilityfrom land use effects that may occur with petroleumdevelopment. A comprehensive, multi-disciplinaryreview and analysis of recent studies and initialinventory and monitoring in the Fish Creek watershedon the ACP provided guidance to develop a frameworkfor future aquatic...
thumbnail
Beaded streams are widespread in permafrost regionsand are considered a common thermokarst landform.However, little is known about their distribution, how andunder what conditions they form, and how their intriguingmorphology translates to ecosystem functions and habitat.Here we report on a circum-Arctic survey of beaded streamsand a watershed-scale analysis in northern Alaska using remotesensing and field studies.We mapped over 400 channelnetworks with beaded morphology throughout the continuouspermafrost zone of northern Alaska, Canada, and Russiaand found the highest abundance associated with mediumto high ground-ice content permafrost in moderately slopingterrain. In one Arctic coastal plain watershed, beaded...
thumbnail
Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since manyArctic lakes are shallow and ice grows thick (historically 2 m or greater), seasonal ice commonly freezes tothe lake bed (bedfast ice) by winter’s end. Bedfast ice fundamentally alters lake energy balance and meltoutprocesses compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintainperennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out ofbedfast ice lakes occurred on average 17 days earlier (22 June) than ice-out on adjacent floating ice lakes (9July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation,...
thumbnail
In Arctic ecosystems, freshwater fish migrateseasonally between productive shallow water habitatsthat freeze in winter and deep overwinter refuge in riversand lakes. How these movements relate to seasonal hydrologyis not well understood.We used passive integratedtransponder tags and stream wide antennae to track1035 Arctic grayling in Crea Creek, a seasonally flowingbeaded stream on the Arctic Coastal Plain, Alaska. Migrationof juvenile and adult fish into Crea Creek peakedin June immediately after ice break-up in the stream. Fishthat entered the stream during periods of high flow andcold stream temperature traveled farther upstream thanthose entering during periods of lower flow and warmertemperature. We used generalized...
thumbnail
Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments...
thumbnail
Field measurements, satellite observations, and models document a thinning trend in seasonal Arcticlake ice growth, causing a shift from bedfast to floating ice conditions. September sea iceconcentrations in the Arctic Ocean since 1991 correlate well (r=+0.69, p<0.001) to this lakeregime shift. To understand how and to what extent sea ice affects lakes, we conducted modelexperiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent forwhich we also had field measurements and satellite imagery characterizing lake ice conditions. Alakeice growth model forced with Weather Research and Forecasting model output produced a 7%decrease in lake ice growth when 2007/08 sea ice was imposed on...
thumbnail
Lake polygons within the Fish Creek Watershed, Alaska were created and classified for a number of variables relevant to size, depth, hydrology, connectivity etc. Products derived from a 5m resolution IfSAR digital surface model by calculating a zero slope. Each feature was expanded by one pixel around the entire perimeter since all waterbodies were truncated by this during the slope calculation. Lakes >=1ha were manually extracted from the dataset and their perimeters further corrected using 2002 CIR orthophotography.
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: AQUATIC ECOSYSTEMS, AQUATIC ECOSYSTEMS, Academics & scientific researchers, Arctic Landscape Conservation Cooperative data.gov, BIOSPHERE, All tags...
thumbnail
The Fish Creek Watershed encompasses diverse aquatic habitats representative of much of the Arctic Coastal Plain of northern Alaska. Beyond surface water and permafrost responses caused by changes in climate, this landscape is also subject to potential land-use impacts related to petroleum development in the National Petroleum Reserve – Alaska (NPR-A). Thus, this region is an ideal setting to address aquatic habitat questions of longstanding interest to Arctic resource managers, scientists, and other stakeholders. Our multidisciplinary team is focusing on broad hypothesis that surface-water availability, connectivity, and temperature mediate aquatic habitats and trophic dynamics. We are working to understand and...
thumbnail
These data are the result of a geospatial analysis involving multi-year SAR-based lake ice regime classification using sigma-naught backscatter intensity from calibrated space-borne C-band SAR for thousands of lakes in 7 lake districts in Alaska, USA, detailed in Engram et al., (in review). Historically, radar backscatter from space-borne and airborne platforms shows a lower backscatter return from bedfast lake ice and a higher backscatter return from floating ice (where liquid phase water exists under the ice) (Jeffries, Morris, Weeks, & Wakabayashi, 1994; Weeks, 1977). We used a threshold method where the threshold to differentiate floating and bedfast ice regimes was determined for each year from the frequency...