Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Project/OrganizationName"} (X) > partyWithName: North Central CASC (X)

89 results (48ms)   

View Results as: JSON ATOM CSV
thumbnail
Pinyon-juniper woodlands are important ecosystems in the western U.S. that provide numerous critical environmental, economic, and cultural benefits. For example, pinyon pines are a significant cultural resource for multiple Native American Tribes and provide necessary habitat for plants and wildlife (including at risk species, such as the pinyon-jay). Despite their importance, stress put on pinyon-juniper woodlands by wildfires and other interacting effects of climate change are causing major population declines of these woodland trees. Such changes to pinyon-juniper woodlands lead to uncertainty for land managers on best practices for protecting these ecosystems from stand replacing fire (where most or all of...
thumbnail
As pressures from climate change and other anthropogenic stressors, like invasive species, increase, new challenges arise for natural resource managers who are responsible for the health of public lands. One of the greatest challenges these managers face is that the traditional way of managing resources might not be as effective, or in some cases might be ineffective, in light of transformational ecological impacts that exist at the intersection of society and ecosystems. Thus, managers are struggling to understand how they should be managing shared natural resources and landscapes in this new era. This project studies the decision-making process of federal land managers to illuminate how decisions are being navigated...
thumbnail
Natural resource managers planning for increased incidence of droughts, floods, and other climate change impacts in the North Central region are in charge of management strategies that can impact the well-being of rural communities in the region. Gaining a better understanding of how resource management decisions may impact rural communities can allow for better consideration of the costs and benefits of resource management decisions. Identifying these impacts is especially important as these communities are often already unfairly disadvantaged and more vulnerable to the impacts of climate change. This project will focus on exploring the ways in which natural resource management decisions affect rural and tribal...
thumbnail
Forests in the western U.S. are increasingly impacted by climate change. Warmer and drier conditions both increase fire activity in western forests and make it more difficult for forests to recover after wildfires. If forests fail to recover, they may shift to non-forest ecosystems like grasslands or shrublands. It is important to understand where fires may result in the loss of forests because forests provide a variety of ecosystem services that human communities rely on, including carbon storage, water regulation and supply, and biodiversity. Western forests are also integral for the timber industry and valued for their recreation opportunities. Anticipating future changes to forest ecosystems, particularly at...
thumbnail
Atmospheric warming is driving a shift in precipitation from snow to rain, changing precipitation intensity and seasonality, and increasing atmospheric demand for moisture in mountain river watersheds across the western United States. These changes will likely alter the timing and quantity of streamflow in rivers draining from the mountains. The Tongue River flows from the Bighorn mountains in north-central Wyoming into Montana through alpine meadows to sagebrush steppe, prior to its confluence with the Yellowstone River at Miles City, MT. The Tongue River is a little-studied river with hydrologic conditions (e.g. water flow, temperature, quantity) relevant to Tribal water rights and management, fisheries, interstate...
Drylands account for approximately 40% of the global land surface and play a dominant role in the trend and variability of terrestrial carbon uptake and storage. Gross ecosystem photosynthesis – termed gross primary productivity (GPP) – is a critical driver of terrestrial carbon uptake and remains challenging to be observed directly. Currently, vegetation indices that largely capture changes in greenness are the most commonly used datasets in satellite-based GPP modeling. However, there remains significant uncertainty in the spatiotemporal relationship between greenness indices and GPP, especially for relatively heterogeneous dryland ecosystems. In this paper, we compared vegetation greenness indices from PhenoCam...
Dense time series of Landsat 8 and Sentinel-2 imagery are creating exciting new opportunities to monitor, map, and characterize temporal dynamics in land surface properties with unprecedented spatial detail and quality. By combining imagery from the Landsat 8 Operational Land Imager and the MultiSpectral Instrument on-board Sentinel-2A and -2B, the remote sensing community now has access to moderate (10–30 m) spatial resolution imagery with repeat periods of ~3 days in the mid-latitudes. At the same time, the large combined data volume from Landsat 8 and Sentinel-2 introduce substantial new challenges for users. Land surface phenology (LSP) algorithms, which estimate the timing of phenophase transitions and quantify...
Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy...
thumbnail
Drought events have cost the U.S. nearly $245 billion since 1980, with costs ranging from $2 to $44 billion in any given year. However, these socio-economic losses are not the only impacts of drought. Ecosystems, fish, wildlife, and plants also suffer, and these types of drought impacts are becoming more commonplace. Further, ecosystems that recover from drought are now doing so under different climate conditions than they have experienced in the past few centuries. As temperature and precipitation patterns change, “transformational drought”, or drought events that can permanently and irreversibly alter ecosystems – such as forests converting to grasslands – are a growing threat. This type of drought has cascading...
thumbnail
Changing climate conditions can make water management planning and drought preparedness decisions more complicated than ever before. Resource managers can no longer rely solely on historical data and trends to base their actions, and are in need of science that is relevant to their specific needs and can directly inform important planning decisions. Questions remain, however, regarding the most effective and efficient methods for extending scientific knowledge and products into management and decision-making. This study analyzed two unique cases of water management to better understand how science can be translated into resource management actions and decision-making. In particular, this project sought to understand...
The Capacity Building Project increased the North Central Climate Science Center (NC CSC) constituents’ abilities to gather and use climate data through formation of the Indigenous Phenology Network (IPN), collaboration with AmericaView to join the PhenoCam network, partnership with the National Conservation Training Center (NCTC) to offer free regional climate smarts courses, and mentoring of students.
thumbnail
The National Park Service is responsible for managing livestock grazing on 94 locations across the country and several grazing management planning efforts for this work are underway. However, there is a recognized need to update grazing management plans to address potential future effects of climate change on related resources and practices. This is the second phase of a project that is using scenario planning (a strategic planning technique used to inform decision-making in the face of uncertain future conditions) to support grazing management at Dinosaur National Monument. In the first phase of the project (Integrating Climate Considerations into Grazing Management Programs in National Parks), the research team...
thumbnail
The 2019 Tribal Climate Camp, hosted by the Confederated Salish and Kootenai Tribes, took place June 16-21, 2019 at the Flathead Lake Biological Station in Polson, Montana. The Tribal Climate Camp was designed to support teams of tribal leaders, climate change coordinators, planners and program managers to build skills, gather information and develop tribal policy needed to address climate change impacts. This week-long program helped build individual and team capacity to lead and manage for climate change and adaptation across departments within a tribe, and between tribes and partner agencies and organizations. Participants included tribal climate change staff, policy leaders, Tribal Council, natural resource...
Land surface phenology (LSP) has been widely used as the “footprint” of urbanization and global climate change. Shifts of LSP have cascading effects on food production, carbon sequestration, water consumption, biodiversity, and public health. Previous studies mainly focused on investigating the effects of urbanization on the spatial patterns of LSP by comparing phenological metrics, e.g. start of season (SOS) and end of season (EOS), between urban center and the surrounding rural regions. However, it remains unclear how urbanization-induced land cover conversions and climate change jointly influence the temporal variations of SOS and EOS within the urban ecosystem. To fill this knowledge gap, we utilized daily two-band...
thumbnail
The North American Prairie Pothole Region (PPR) is an expansive region that covers parts of five Midwestern states and three Canadian provinces. This region contains millions of wetlands in which waterfowl breed and from which 50-80% of the continent's migratory ducks originate each year. Previous modeling efforts indicated that climate change would result in a shift of suitable waterfowl breeding habitat from the central PPR to the southeastern portion of the region, an area where the majority of wetlands have been drained. If this future scenario were to materialize, a significant restoration effort would be needed in the southeastern PPR to support waterfowl production. However, more recent research has revealed...
thumbnail
Land and water managers often rely on hydrological models to make informed management decisions. Understanding water availability in streams, rivers, and reservoirs during high demand periods that coincide with seasonal low flows can affect how water managers plan for its distribution for human consumption while sustaining aquatic ecosystems. Substantial advancement in hydrological modeling has occurred in the last several decades resulting in models that range widely in complexity and outputs. However, managers can still struggle to make informed decisions with these models for a variety of reasons, including misalignments between model outputs and the specific decision they are intended to inform, limitations...
thumbnail
The long-term success of management efforts in sagebrush habitats are increasingly complicated by the impacts of a changing climate throughout the western United States. These complications are most evident in the ongoing challenges of drought and altered rangeland fire regimes resulting from the establishment of nonnative annual grasses. The Integrated Rangeland Fire Management Strategy recognized these growing threats to sagebrush habitat and initiated the development of an Actionable Science Plan to help the scientific and management communities address the highest priority science needs to help improve rangeland management efficacy in the West. Since the establishment of the original Integrated Rangeland Fire...
thumbnail
The NC CASC supports co-produced actionable science, data-intensive discovery, and open science to support tribal, federal, state, and local natural resource managers and decision-makers in the North Central region, which serves Colorado, Wyoming, Montana, North Dakota, South Dakota, Kansas and Nebraska. NC CASC is hosted by the University of Colorado Boulder (CU Boulder) within the Cooperative Institute for Research in Environmental Sciences , and is a partnership between CU Boulder, the U.S. Geological Survey, and five consortium partners: University of Montana; South Dakota State University; Conservation Science Partners; Wildlife Conservation Society; and Great Plains Tribal Water Alliance. During the period...
thumbnail
Even when faced with uncertainty about future climate conditions, resource managers are tasked with making planning and adaptation decisions that impact important natural and cultural resources. Species distribution models are widely used by both researchers and managers to estimate species responses to climate change. These models combine data on environmental variables (e.g., temperature, precipitation) with field samples of a species’ presence, absence, and/or abundance to project and visualize potential habitat of the species across space and time. However, species distribution modeling software previously developed and supported by USGS (the Software for Assisted Habitat Modeling [SAHM] package for VisTrails)...


map background search result map search result map Climate-Driven Shifts in Prairie Pothole Wetlands: Assessing Future Impacts to Critical Waterfowl Habitats Identifying Characteristics of Actionable Science for Drought Planning and Adaptation Support for the 2019 Tribal Climate Camp Anticipating Forest Vulnerability to Fire-Catalyzed Ecosystem Change in the Northern Rocky Mountains State of the Science Synthesis on Transformational Drought: Understanding Drought’s Potential to Transform Ecosystems Across the Country North Central Climate Adaptation Science Center Consortium - Hosted by The University of Colorado Boulder (2018-2023) Determining Successful Management and Restoration Strategies for Pinyon-Juniper Communities in the Face of Changing Climate and Wildfire Public Land Manager Decision-Making Under Ecological Transformation Modeling to Support Grazing Management Planning in U.S. National Parks: A Case Study from Dinosaur National Monument Developing A New Software Package to Enhance Species Distribution Model Functionality Future Streamflow Estimates for Tongue River to Enable Northern Cheyenne Data Driven Water Management and Planning State of the Science in Streamflow Modeling in the North Central Region to Address Partner Needs for Water Availability Under Drought Conditions Providing a Climate Science Foundation for Updating the Integrated Rangeland Fire Management Strategy Actionable Science Plan Understanding the Intersection of Climate Vulnerability and Resource Management in Rural Communities Future Streamflow Estimates for Tongue River to Enable Northern Cheyenne Data Driven Water Management and Planning Understanding the Intersection of Climate Vulnerability and Resource Management in Rural Communities Determining Successful Management and Restoration Strategies for Pinyon-Juniper Communities in the Face of Changing Climate and Wildfire Support for the 2019 Tribal Climate Camp State of the Science in Streamflow Modeling in the North Central Region to Address Partner Needs for Water Availability Under Drought Conditions Anticipating Forest Vulnerability to Fire-Catalyzed Ecosystem Change in the Northern Rocky Mountains Identifying Characteristics of Actionable Science for Drought Planning and Adaptation North Central Climate Adaptation Science Center Consortium - Hosted by The University of Colorado Boulder (2018-2023) Developing A New Software Package to Enhance Species Distribution Model Functionality Climate-Driven Shifts in Prairie Pothole Wetlands: Assessing Future Impacts to Critical Waterfowl Habitats Providing a Climate Science Foundation for Updating the Integrated Rangeland Fire Management Strategy Actionable Science Plan Public Land Manager Decision-Making Under Ecological Transformation State of the Science Synthesis on Transformational Drought: Understanding Drought’s Potential to Transform Ecosystems Across the Country