Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/WaterCoastsandIce"} (X) > partyWithName: Vipin Kumar (X)

22 results (32ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset provides model specifications used to estimate water temperature from a process-based model (Hipsey et al. 2019). The format is a single JSON file indexed for each lake based on the "site_id". This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes model inputs that describe local weather conditions for Sparkling Lake, WI. Weather data comes from two sources: locally measured (2009-2017) and gridded estimates (all other time periods). There are two comma-delimited files, one for weather data (one row per model timestep) and one for ice-flags, which are used by the process-guided deep learning model to determine whether to apply the energy conservation constraint (the constraint is not applied when the lake is presumed to be ice-covered). The ice-cover flag is a modeled output and therefore not a true measurement (see "Predictions" and "pb0" model type for the source of this prediction). This dataset is part of a larger data release of...
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of Minnesota and Wisconsin. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added...
thumbnail
This dataset includes model inputs that describe weather conditions for the 68 lakes included in this study. Weather data comes from gridded estimates (Mitchell et al. 2004). There are two comma-separated files, one for weather data (one row per model timestep) and one for ice-flags, which are used by the process-guided deep learning model to determine whether to apply the energy conservation constraint (the constraint is not applied when the lake is presumed to be ice-covered). The ice-cover flag is a modeled output and therefore not a true measurement (see "Predictions" and "pb0" model type for the source of this prediction). This dataset is part of a larger data release of lake temperature model inputs and outputs...
thumbnail
This dataset includes model inputs (specifically, weather and flags for predicted ice-cover) and is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
Climate change has been shown to influence lake temperatures in different ways. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we focused on improving prediction accuracy for daily water temperature profiles in 68 lakes in Minnesota and Wisconsin during 1980-2018. The data are organized into these items: Spatial data - One shapefile of polygons for all 68 lakes in this study (.shp, .shx, .dbf, and .prj files) Model configurations - Model parameters and metadata used to configure models (1 JSON file, with metadata for each of 68 lakes, indexed by "site_id") Model inputs - Data formatted as model inputs for predicting temperature a. Lake...
thumbnail
This dataset includes compiled water temperature data from an instrumented buoy on Lake Mendota, WI and discrete (manually sampled) water temperature records from North Temperate Lakes Long-TERM Ecological Research Program (NTL-LTER; https://lter.limnology.wisc.edu/). The buoy is supported by both the Global Lake Ecological Observatory Network (gleon.org) and the NTL-LTER. This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes evaluation data ("test" data) and performance metrics for water temperature predictions from multiple modeling frameworks. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added physical constraint for...
thumbnail
This dataset includes model inputs that describe local weather conditions for Lake Mendota, WI. Weather data comes from two sources: locally measured (2009-2017) and gridded estimates (all other time periods). There are two comma-delimited files, one for weather data (one row per model timestep) and one for ice-flags, which are used by the process-guided deep learning model to determine whether to apply the energy conservation constraint (the constraint is not applied when the lake is presumed to be ice-covered). The ice-cover flag is a modeled output and therefore not a true measurement (see "Predictions" and "pb0" model type for the source of this prediction). This dataset is part of a larger data release of lake...
thumbnail
This dataset includes evaluation data ("test" data) and performance metrics for water temperature predictions from multiple modeling frameworks. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added physical constraint for...
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of Minnesota and Wisconsin. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added...
thumbnail
Lakes, reservoirs, and ponds are central and integral features of the North Central U.S. These water bodies provide aesthetic, cultural, and ecosystem services to surrounding wildlife and human communities. External impacts – such as climate change – can have significant impacts to these important parts of the region’s landscape. Understanding the responses of lakes to these drivers is critical for species conservation and management decisions. Water temperature data are foundational to providing this understanding and are currently the most widely measured of all aquatic parameters with over 400 unique groups monitoring water temperature in U.S. lakes and rivers. However, lake temperature data are lacking at...
thumbnail
This dataset provides shapefile of outlines of the 68 lakes where temperature was modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes compiled water temperature data from a variety of sources, including the Water Quality Portal (Read et al. 2017), the North Temperate Lakes Long-TERM Ecological Research Program (https://lter.limnology.wisc.edu/), the Minnesota department of Natural Resources, and the Global Lake Ecological Observatory Network (gleon.org). This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes "test data" compiled water temperature data from an instrumented buoy on Lake Mendota, WI and discrete (manually sampled) water temperature records from North Temperate Lakes Long-TERM Ecological Research Program (NTL-LTER; https://lter.limnology.wisc.edu/). The buoy is supported by both the Global Lake Ecological Observatory Network (gleon.org) and the NTL-LTER. The dataset also includes Lake Mendota model erformance as measured as root-mean squared errors relative to temperature observations during the test period. This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of Minnesota and Wisconsin. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added...
thumbnail
Many inland waters across the United States are experiencing warming water temperatures. The impacts of this warming on aquatic ecosystems are significant in many areas, causing problems for fisheries management, as many economically and ecologically important fish species are experiencing range shifts and population declines. Fisheries and natural resource managers need timely and usable data and tools in order to understand and predict changes to lakes and their biota. A previous Northeast CSC-funded project modeled lake temperatures to help state agencies in the Midwest understand trends in walleye and largemouth bass populations and predict lake-specific fish populations under future climate scenarios. These...
thumbnail
Observed water temperatures from 1980-2018 were compiled for 68 lakes in Minnesota and Wisconsin (USA). These data were used as training data for process-guided deep learning models and deep learning models, and calibration data for process-based models. The data are formatted as a single csv (comma separated values) file with attributes corresponding to the unique combination of lake identifier, time, and depth. Data came from a variety of sources, including the Water Quality Portal, the North Temperate Lakes Long-Term Ecological Research Project, and digitized temperature records from the MN Department of Natural Resources.
thumbnail
This dataset includes "test data" compiled water temperature data from an instrumented buoy on Sparkling Lake, WI and discrete (manually sampled) water temperature records from North Temperate Lakes Long-TERM Ecological Research Program (NTL-LTER; https://lter.limnology.wisc.edu/). The buoy is supported by both the Global Lake Ecological Observatory Network (gleon.org) and the NTL-LTER. The dataset also includes Sparkling Lake model erformance as measured as root-mean squared errors relative to temperature observations during the test period. This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes compiled water temperature data from an instrumented buoy on Sparkling Lake, WI and discrete (manually sampled) water temperature records from North Temperate Lakes Long-TERM Ecological Research Program (NTL-LTER; https://lter.limnology.wisc.edu/). The buoy is supported by both the Global Lake Ecological Observatory Network (gleon.org) and the NTL-LTER. This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).


map background search result map search result map “Hyperscale” Modeling to Understand and Predict Temperature Changes in Midwest Lakes Understanding Historical and Predicting Future Lake Temperatures in North and South Dakota Process-guided deep learning predictions of lake water temperature Process-guided deep learning water temperature predictions: 1 Spatial data (GIS polygons for 68 lakes) Process-guided deep learning water temperature predictions: 3 Model inputs (meteorological inputs and ice flags) Process-guided deep learning water temperature predictions: 2 Model configurations (lake metadata and parameter values) Process-guided deep learning water temperature predictions: 4 Training data Process-guided deep learning water temperature predictions: 4b Sparkling Lake detailed training data Process-guided deep learning water temperature predictions: 4c All lakes historical training data Process-guided deep learning water temperature predictions: 4a Lake Mendota detailed training data Process-guided deep learning water temperature predictions: 5 Model prediction data Process-guided deep learning water temperature predictions: 5c All lakes historical prediction data Process-guided deep learning water temperature predictions: 5a Lake Mendota detailed prediction data Process-guided deep learning water temperature predictions: 6 Model evaluation (test data and RMSE) Process-guided deep learning water temperature predictions: 6c All lakes historical evaluation data Process-guided deep learning water temperature predictions: 6a Lake Mendota detailed evaluation data Process-guided deep learning water temperature predictions: 6b Sparkling Lake detailed evaluation data Process-guided deep learning water temperature predictions: 3c All lakes historical inputs Process-guided deep learning water temperature predictions: 3a Lake Mendota inputs Process-guided deep learning water temperature predictions: 3b Sparkling Lake inputs Process-guided deep learning water temperature predictions: 4b Sparkling Lake detailed training data Process-guided deep learning water temperature predictions: 6b Sparkling Lake detailed evaluation data Process-guided deep learning water temperature predictions: 3b Sparkling Lake inputs Process-guided deep learning water temperature predictions: 4a Lake Mendota detailed training data Process-guided deep learning water temperature predictions: 5a Lake Mendota detailed prediction data Process-guided deep learning water temperature predictions: 6a Lake Mendota detailed evaluation data Process-guided deep learning water temperature predictions: 3a Lake Mendota inputs Understanding Historical and Predicting Future Lake Temperatures in North and South Dakota Process-guided deep learning predictions of lake water temperature Process-guided deep learning water temperature predictions: 3 Model inputs (meteorological inputs and ice flags) Process-guided deep learning water temperature predictions: 2 Model configurations (lake metadata and parameter values) Process-guided deep learning water temperature predictions: 4 Training data Process-guided deep learning water temperature predictions: 4c All lakes historical training data Process-guided deep learning water temperature predictions: 5 Model prediction data Process-guided deep learning water temperature predictions: 5c All lakes historical prediction data Process-guided deep learning water temperature predictions: 6 Model evaluation (test data and RMSE) Process-guided deep learning water temperature predictions: 6c All lakes historical evaluation data Process-guided deep learning water temperature predictions: 3c All lakes historical inputs Process-guided deep learning water temperature predictions: 1 Spatial data (GIS polygons for 68 lakes) “Hyperscale” Modeling to Understand and Predict Temperature Changes in Midwest Lakes