Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Themes/Powell_CMS_Themes","name":"water resources"} (X) > Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Themes/Powell_CMS_Themes","name":"land resources"} (X) > Categories: Project (X)

6 results (58ms)   

View Results as: JSON ATOM CSV
thumbnail
Water cycling and availability exert dominant control over ecological processes and the sustainability of ecosystem services in water - limited ecosystems. Consequently, dryland ecosystems have the potential to be dramatically impacted by hydrologic alterations emerging from global change, notably increasing temperature and altered precipitation patterns. In addition, the possibility of directly manipulating global solar radiation by augmenting stratospheric SO2 is receiving increasing attention as CO2 emissions continue to increase - these manipulations are anticipated to decrease precipitation, a change that may be as influential as temperature increases in dryland ecosystems. We propose to integrate a proven...
thumbnail
Groundwater withdrawals in the western US are a critical component of the water resources strategy for the region. Climate change already may be substantially altering recharge into groundwater systems; however, the quantity and direction (increase or decrease) of changes are relatively unknown as most climate change assessments have focused on surface water systems. We propose to conduct a broad scale literature review followed by a synthesis of available data, analysis and simulations with available downscaled climate scenarios to understand how recharge in the western US might respond to plausible climatic shifts during the rest of the 21st Century. We will produce an estimated range of impacts on groundwater...
thumbnail
Resilience science provides a conceptual framework and methodology for quantitatively assessing the ability of a system to remain in a particular state. Probable non-linear ecological responses to global change, including climate change, require a clear framework for understanding and managing resilience. However, much of the resilience research to date has been qualitative in nature, and frameworks developed for the implementation of resilience science have been either vague or focused on the social component of social-ecological systems. Attempts to quantify resilience and operationalize the concept include the cross-scale resilience model, discontinuity theory and the early detection of leading indicators of...
thumbnail
The transport of dissolved organic matter (DOM) by rivers is an important component of the global carbon cycle, affects ecosystems and water quality, and reflects biogeochemical and hydrological processes in watersheds. Understanding the fundamental relationships between discharge and DOM concentration and composition reveals important information about watershed flow paths, soil flushing, connectivity to riparian zones, organic matter leaching, soil moisture, and climatic influences. Data to describe these processes - both magnitude and timing - is critical for modeling and predicting watershed DOM dynamics, particularly in light of land use and climate change . Despite several decades of data collection, a synthesis...
thumbnail
Streamflow is declining in many parts of the United States (US) due to factors including groundwater pumping, land use change, and climate change. Streamflow depletion, a reduction in groundwater discharge to a stream due to human activities such as pumping and/or land use change, tends to evolve slowly and can be entirely invisible for many years to decades. This is because streamflow depletion can be masked by the natural and/or climate change-induced variability in streamflow, and groundwater storage can buffer the impacts on streams. The negative effects on both anthropogenic and ecological systems can evolve over decades or more, and specific causes and potential solutions to these issues are often difficult...
thumbnail
Global climate change is putting unprecedented pressure on global croplands and their water use, vital for ensuring future food security for the world's rapidly expanding human population. The end of the green green revolution (productivity per unit of land) era has meant declining global per capita agricultural production requiring immediate policy responses to safeguard food security amidst global climate change and economic turbulence. Above all, global croplands are water guzzlers, consuming between 60-90% of all human water use. With increasing urbanization, industrialization, and other demands (e.g., bio-fuels) on water there is increasing pressure to reduce agricultural water use by producing more food from...


    map background search result map search result map Global Croplands and Their Water Use for Food Security in the Twenty-first Century