Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Topics/CASC_CMS_Topics"} (X) > Types: OGC WMS Layer (X) > Extensions: Expando (X)

66 results (19ms)   

View Results as: JSON ATOM CSV
thumbnail
The Northwest Climate Conference (formerly called the Pacific Northwest Climate Science Conference) is the premier climate science event for the region, providing a forum for researchers and practitioners to share scientific results and discuss challenges and solutions related to the impacts of climate change on people, natural resources, and infrastructure in the Northwest. Conference participants include policy- and decision-makers, resource managers, and scientists from academia, public agencies, sovereign tribal nations, non-governmental organizations, and the private sector. More information can be found at the conference website: http://pnwclimateconference.org. The Fourth Annual Pacific Northwest Climate...
thumbnail
Enhancing ecological connectivity - the degree to which landscapes facilitate the movement of the organisms within them - is a frequently recommended strategy for conserving wildlife populations into the future. This is because a primary way in which species respond to climate change is by adjusting their geographic ranges to find more suitable temperatures and adequate food supplies. It is also because connectivity facilitates many other important ecological and evolutionary processes within species' ranges, further promoting resilience and healthy populations. However, widespread fragmentation of landscapes by human activities presents a serious obstacle to these processes, which may contribute to a decline in...
thumbnail
As the predicted impacts of climate change are becoming more apparent, natural resource managers are faced with the task of developing climate adaptation plans. These managers need state-of-the-art, scientifically based information upon which to base these management plans and decisions consistently across California and the Great Basin. This project applies historical, current, and projected climate data to a regional water model to examine water availability, biodiversity, and conservation. Analysis of this climate and hydrology data is expected to help managers understand areas in the region and landscape where the effects of climate change are expected to be the most profound. The study also addresses how the...
thumbnail
This project aimed to contribute to effective decision making in the region for the scientific community and general public. Resource managers in the Great Basin are dealing with significant questions regarding how best to make decisions in the natural and human systems in response to climate change. Vulnerability assessments and other tools are used for climate change adaptation, but their effectiveness is not widely understood or examined. Assessing these tools for their utility and for their ability to translate science into accessible and available information for users, including the general public, is critical for the future viability and sustainability of the Great Basin. This project applied social and policy...
thumbnail
What will the rivers of the Pacific Northwest look like in the future? Will they be stable or unstable? Will the waters be cold and clear or warm and muddy? Will they have salmon or other species? These questions motivated our two-year study of climate warming effects on headwater streams draining the Cascade Mountains. Using a novel combination of snow, geohydrology, and sediment transport models we assessed the vulnerability of stream channels to changing peak streamflow. Our snow modeling shows that with just a 2°C warming, snowfall shifts to rainfall at all elevations, peak snowpacks occur over two months earlier, and snowpacks are reduced by over half of historical values. Our geohydrology modeling shows that...
thumbnail
Over 50% of commercial and recreationally important fish species depend on coastal wetlands. In the Pacific Northwest, coastal wetlands, where the ocean meets the land, are highly productive areas that support a wealth of wildlife species from salmon to ducks. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats and provide economic and recreational benefits to local communities. However, wetlands in this region and elsewhere are threatened by sea-level rise and other climate-related changes. According to a USFWS and NOAA report, between 2004 and 2009, 80,000 acres of wetland were lost on average each year, which is a significant increase from the previous...


map background search result map search result map Climate Change and Peak Flows: Informing Managers About Future Impacts to Streamflow Dynamics and Aquatic Habitat Marshes to Mudflats: Climate Change Effects Along Coastal Estuaries in the Pacific Northwest Using Climate and Water Models to Examine Future Water Availability and Biodiversity in California and the Great Basin Support for the Fourth Annual Pacific Northwest Climate Science Conference Creating Practitioner‐Driven, Science‐Based Plans for Connectivity Conservation in the Washington-British Columbia Transboundary Region Assessing the Usefulness of Vulnerability Assessments and Other Science-based Tools in Climate Adaptation Climate Change and Peak Flows: Informing Managers About Future Impacts to Streamflow Dynamics and Aquatic Habitat Creating Practitioner‐Driven, Science‐Based Plans for Connectivity Conservation in the Washington-British Columbia Transboundary Region Support for the Fourth Annual Pacific Northwest Climate Science Conference Assessing the Usefulness of Vulnerability Assessments and Other Science-based Tools in Climate Adaptation Marshes to Mudflats: Climate Change Effects Along Coastal Estuaries in the Pacific Northwest Using Climate and Water Models to Examine Future Water Availability and Biodiversity in California and the Great Basin