Skip to main content
Advanced Search

Filters: Tags: {"scheme":"none"} (X) > partyWithName: U.S. Geological Survey (X) > Types: OGC WMS Service (X) > Categories: Data Release - Revised (X)

5 results (14ms)   

View Results as: JSON ATOM CSV
thumbnail
A three-dimensional groundwater flow model using MODFLOW-NWT was developed to evaluate historical and potential stream capture in the lower Humboldt River Basin, Nevada. The Humboldt River Basin is the only river basin that is contained entirely within the state of Nevada. The effect of groundwater pumping on the Humboldt River is not well understood. Tools are needed to determine stream capture and manage groundwater pumping in the Humboldt River Basin. Previous work has demonstrated that the river’s surface-water resource is sensitive to groundwater withdrawals, which have steadily increased since the 1950s for agriculture, municipal, and mining uses. A numerical groundwater flow model was developed for the purpose...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018 Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). A recently published extension of WRTDS allows users to separate these estimates into high- and low-flow conditions. This data release contains (1) a table of daily high- and low-flow concentration and load estimates for NTN stations between 1985 - 2018 and (2) an R file that contains...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
This data release includes concentrations of 24 per- and polyfluoroalkyl substances (PFAS) and physical properties of water-quality samples collected by the U.S. Geological Survey (USGS) at 64 selected sites in rivers and streams in Massachusetts over three rounds of sampling. The samples were collected from August to November 2020 when streamflow conditions were below normal (also considered to be base-flow conditions) at rivers and streams in urban areas that receive treated wastewater from municipal wastewater-treatment facilities, and in rural rivers and streams that are not associated with municipal wastewater discharges and may have other source inputs of PFAS. The measured physical properties include water...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds and were estimated using the WRTDS method with Kalman filtering. To determine the trend in loads, the annual load results are flow...


    map background search result map search result map Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates (ver. 1.1, November 2021) Environmental and Quality-Control Data for Per- and Polyfluoroalkyl Substances (PFAS) Measured in Selected Rivers and Streams in Massachusetts, 2020 (ver. 2.0, May 2023) Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2020 (ver. 2.0, January 2023) MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) Environmental and Quality-Control Data for Per- and Polyfluoroalkyl Substances (PFAS) Measured in Selected Rivers and Streams in Massachusetts, 2020 (ver. 2.0, May 2023) Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates (ver. 1.1, November 2021) Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2020 (ver. 2.0, January 2023)