Skip to main content
Advanced Search

Filters: Tags: {"type":"Keyword"} (X) > Extensions: Project (X) > partyWithName: North Central CSC (X)

9 results (151ms)   

View Results as: JSON ATOM CSV
thumbnail
Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers. This project used a dynamic vegetation model to simulate vegetation type (grassland, shrubland, woodland, and forest) for the NGP for a range of projected future climates and relevant management scenarios. Comparing results of these simulations illustrates...
thumbnail
With joint funding from the North Central Climate Science Center (NC CSC) and NASA's Earth Science Applied Sciences Program, the NC CSC supports resource managers and their decision process through its Resource for Vulnerability Assessment, Adaptation and Mitigation Planning (ReVAMP), a collaborative research/planning effort supported by high performance computing and modeling resources. The NC CSC focuses primarily on climate data as input to the ReVAMP. In this project the NASA DEVELOP program was used to evaluate how remote sensing data sets can contribute to the ecological response models that are implemented in the ReVAMP system. This work demonstrates the utility of remote sensing in vulnerability assessment...
thumbnail
Federal land managers need an adaptive management framework to accommodate changing conditions and that allows them to effectively link the appropriate science to natural resource management decision-making across jurisdictional boundaries. FRAME-SIMPPLLE is a collaborative modeling process designed to accomplish this goal by coupling the adaptive capabilities of the SIMPPLLE modeling system with accepted principles of collaboration. The two essential components of the process are FRAME (Framing Research in support of the Adaptive Management of Ecosystems), which creates a collaborative problem-solving environment, and SIMPPLLE (SIMulating Patterns and Processes at Landscape Scales), which is a vegetation dynamics...
thumbnail
Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project aimed to leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements of biodiversity to climate and land use change in order to inform the development and implementation of management options. Outcomes from this activity were expected to include 1) a framework for modeling vegetation type and species response to climate and land use change, 2) an evaluation of existing alternative vegetation...
thumbnail
In response to the potential impacts of climate and land use change to the Nation’s ecosystems, the Bureau of Land Management (BLM) launched a series of Rapid Ecoregional Assessments (REAs) in 2010. The REAs are focused on improving our understanding of the current state of ecosystems and how conditions may be impacted by changes in climate, land use, and other stressors. Researchers with the North Central CSC and the National Oceanic and Atmospheric Administration (NOAA) provided climate science support to the Wyoming Basin REA. The Wyoming Basin REA is a landscape-scale ecological assessment of over 33 million acres in Wyoming, Colorado, Utah, Idaho, and Montana. This region has some of the highest quality wildlife...
thumbnail
Managers already face uncertainty when making decisions about how to best manage natural resources. Now, climate change is adding an additional level of complexity to resource management decisions. Understanding the ability of human and ecological communities to adapt to changing conditions (known as their adaptive capacity) is an integral component of effective management planning in the face of climate change. So too is identifying ways in which managers can better incorporate information on climate and the vulnerability of resources into their decision-making. This project sought to improve decision-making in the North Central region by developing an approach to managing natural resources that acknowledges...
thumbnail
Climate affects both the demographics of the Greater sage-grouse bird and the condition and long-term viability of their habitats, including sage-steppe communities. This project builds on collaboration among federal land managers, state wildlife biologists, scientists, and other organizations to create a long-term framework for implementing adaptive management for the sage-grouse. The study examined factors that might be limiting grouse numbers and will investigate components of weather patterns in relation to projected climate change models. Precipitation and temperature, as well as variables such as evaporation and soil moisture, will be considered. Overall, the project focused on (1) providing workshops to foster...
thumbnail
Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquatic animals. This project aimed to predict these effects of climate change on cottonwood and willow tree regeneration in western forests by linking models of seed dispersal timing, streamflow hydrology, and seedling establishment, focusing on the upper South Platte River Basin as a study area. Results are expected to help...
thumbnail
In the Great Plains, climate change is expected to result in more frequent and intense droughts, severe rainfall events, and heat waves. Adapting to changing conditions will require coordination in the research and observation capabilities of multiple organizations, institutions, and government programs. In light of these needs, researchers worked with federal, state, tribal, university, and non-governmental organization partners to (1) synthesize the current state of ecosystems in the Great Plains; (2) assess the ability of human and ecological communities in the region to adapt to climate change; and (3) develop a process to improve future assessments of the vulnerability of the region’s natural and cultural resources...


    map background search result map search result map Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Potential Climate Impacts and Adaptation Strategies in the Great Plains Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests Integrating Climate and Biological Data into Management Decisions for the Greater Sage-­Grouse and their Habitats Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Incorporating Adaptive Capacity into Decision-Making in the North Central U.S. Science to Support an Assessment of Future Climate Impacts on Wildlife in Wyoming Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests Integrating Climate and Biological Data into Management Decisions for the Greater Sage-­Grouse and their Habitats Science to Support an Assessment of Future Climate Impacts on Wildlife in Wyoming Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Potential Climate Impacts and Adaptation Strategies in the Great Plains Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems Incorporating Adaptive Capacity into Decision-Making in the North Central U.S. Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S.