Skip to main content
Advanced Search

Filters: Tags: {"type":"NCCWSC Science Themes"} (X) > partyWithName: Crystal Kolden (X)

5 results (54ms)   

View Results as: JSON ATOM CSV
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after wildfire by providing habitat and seed sources. With increasing fire activity, there is speculation that fire intensity and...
Unburned islands are areas within wildfire perimeters that did not burn. These islands are important because they serve as a refuge both during and after the fire for plants and animals to survive and subsequently repopulate adjacent burned areas. This project sought to better understand how and why these islands occur – what makes some areas of the landscape fireproof, even as everything around them burns? How can we use that information to manage forests and rangelands in a way that supports continued development of unburned islands and fire refugia, even under climate change? To answer these questions, we developed a historical atlas of unburned islands across the Northwest (Washington, Oregon, and Idaho) and...
Abstract (from http://www.publish.csiro.au/paper/WF15082.htm): The Monitoring Trends in Burn Severity project is a comprehensive fire atlas for the United States that includes perimeters and severity data for all fires greater than a particular size (~400 ha in the western US, and ~200 ha in the eastern US). Although the database was derived for management purposes, the scientific community has expressed interest in its research capacity. As with any derived data, it is critical to understand inherent limitations to maximise the utility of the dataset without compromising the inferences. The classified severity product in particular is of limited use to research due to a lack of both consistency in developing class...
Abstract (from Biogeosciences): Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland...
Abstract (from CSIRO): Remote sensing products provide a vital understanding of wildfire effects across a landscape, but detection and delineation of low- and mixed-severity fire remain difficult. Although data provided by the Monitoring Trends in Burn Severity (MTBS) project are frequently used to assess severity in the United States, alternative indices can offer improvement in the measurement of low-severity fire effects and would be beneficial for future product development and adoption. This research note evaluated one such alternative, the Mid-Infrared Bi-Spectral Index (MIRBI), which was developed in savannah ecosystems to isolate spectral changes caused by burning and reduce noise from other factors. MIRBI,...