Skip to main content
Advanced Search

Filters: Tags: {"type":"NYWSC Water Quality","name":"water-use"} (X) > Types: Map Service (X) > Categories: Data (X) > Extensions: Project (X)

4 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
Background For effective wellhead protection, the area where water carrying potential contaminants can enter the groundwater system and flow to the supply well must first be defined, and then best management practices need to be implemented to minimize the opportunity for contamination to occur in areas defined as sources of water to the well. Determination of the sources of water and contributing areas to wells is complex because aquifers and their connection with recharge sources are heterogeneous in nature and hidden from direct observation. The major groundwater source for public supplies in upstate New York are valley-fill aquifers of glacial and post-glacial origin. Saturated coarse-grained sediments (sand...
thumbnail
Problem - The demand for water in New York State is unevenly distributed. Because increasing competition for local supplies could lead to shortages, it is expedient to know how and where water is withdrawn, delivered, and used. There are many dimensions to water-use issues, and all should be considered to develop a full understanding of the use and delivery of water in the State. In order to apply water-use information to problems of water-demand management, many data elements need to be collected and stored in a convenient location and format. The categories of water use most commonly considered include public-water supply, domestic, thermoelectric power generation, industrial, irrigation and, to a lesser degree,...
thumbnail
Background Every day, the New York City Department of Environmental Protection (DEP) supplies more than one billion gallons of drinking water to more than nine million people. To do this, the DEP maintains an extensive network of reservoirs and aqueducts. A major part of this system, the West of Hudson (WOH) network, in the Delaware and Hudson River drainages, includes six reservoirs (fig. 1) – Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie – which were constructed from the early 1900s to the 1960s and have an estimated combined storage capacity of more than 460 billion gallons. Problem and Objective The daily and seasonal management of the WOH reservoirs by DEP depends on accurate bathymetric...
thumbnail
Problem Statement More than nine million people rely on the New York City Water-Supply System for their daily-drinking water needs. Approximately 40 percent of this water comes from the Schoharie and Ashokan Reservoirs (fig. 1). This water is transported from the Catskill Area to New York City through Esopus Creek and a series of man-made tunnels and aqueducts built starting in the early 1900s (fig. 1). The U.S. Geological Survey (USGS) has been measuring streamflow continuously in the Upper and Lower Esopus Creeks for many decades. Specifically, streamflow has been measured in the Upper Esopus Creek at Coldbrook (station number 01362500) for about 80 years and in the Lower Esopus Creek at Mount Marion (station...


    map background search result map search result map Bathymetry of New York City's West of Hudson Reservoirs Water Use in New York Estimated Non-reservoir Streamflows of Esopus Creek at Coldbrook and Mount Marion, New York Simulation of Contributing Areas to Selected Public Water-Supply Wellfields in the Valley-Fill Aquifers of New York State Estimated Non-reservoir Streamflows of Esopus Creek at Coldbrook and Mount Marion, New York Bathymetry of New York City's West of Hudson Reservoirs Simulation of Contributing Areas to Selected Public Water-Supply Wellfields in the Valley-Fill Aquifers of New York State Water Use in New York