Skip to main content
Advanced Search

Filters: Tags: {"type":"Organization","name":"northeast casc"} (X) > partyWithName: U.S. Geological Survey (X)

23 results (50ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset provides model specifications used to estimate water temperature from a process-based model (Hipsey et al. 2019). The format is a single JSON file indexed for each lake based on the "site_id". This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes model inputs that describe local weather conditions for Sparkling Lake, WI. Weather data comes from two sources: locally measured (2009-2017) and gridded estimates (all other time periods). There are two comma-delimited files, one for weather data (one row per model timestep) and one for ice-flags, which are used by the process-guided deep learning model to determine whether to apply the energy conservation constraint (the constraint is not applied when the lake is presumed to be ice-covered). The ice-cover flag is a modeled output and therefore not a true measurement (see "Predictions" and "pb0" model type for the source of this prediction). This dataset is part of a larger data release of...
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of Minnesota and Wisconsin. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added...
thumbnail
This dataset includes model inputs that describe weather conditions for the 68 lakes included in this study. Weather data comes from gridded estimates (Mitchell et al. 2004). There are two comma-separated files, one for weather data (one row per model timestep) and one for ice-flags, which are used by the process-guided deep learning model to determine whether to apply the energy conservation constraint (the constraint is not applied when the lake is presumed to be ice-covered). The ice-cover flag is a modeled output and therefore not a true measurement (see "Predictions" and "pb0" model type for the source of this prediction). This dataset is part of a larger data release of lake temperature model inputs and outputs...
thumbnail
This dataset includes model inputs (specifically, weather and flags for predicted ice-cover) and is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
Climate change has been shown to influence lake temperatures in different ways. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we focused on improving prediction accuracy for daily water temperature profiles in 68 lakes in Minnesota and Wisconsin during 1980-2018. The data are organized into these items: Spatial data - One shapefile of polygons for all 68 lakes in this study (.shp, .shx, .dbf, and .prj files) Model configurations - Model parameters and metadata used to configure models (1 JSON file, with metadata for each of 68 lakes, indexed by "site_id") Model inputs - Data formatted as model inputs for predicting temperature a. Lake...
thumbnail
This dataset includes compiled water temperature data from an instrumented buoy on Lake Mendota, WI and discrete (manually sampled) water temperature records from North Temperate Lakes Long-TERM Ecological Research Program (NTL-LTER; https://lter.limnology.wisc.edu/). The buoy is supported by both the Global Lake Ecological Observatory Network (gleon.org) and the NTL-LTER. This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes evaluation data ("test" data) and performance metrics for water temperature predictions from multiple modeling frameworks. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added physical constraint for...
thumbnail
This dataset includes model inputs that describe local weather conditions for Lake Mendota, WI. Weather data comes from two sources: locally measured (2009-2017) and gridded estimates (all other time periods). There are two comma-delimited files, one for weather data (one row per model timestep) and one for ice-flags, which are used by the process-guided deep learning model to determine whether to apply the energy conservation constraint (the constraint is not applied when the lake is presumed to be ice-covered). The ice-cover flag is a modeled output and therefore not a true measurement (see "Predictions" and "pb0" model type for the source of this prediction). This dataset is part of a larger data release of lake...
thumbnail
This dataset includes evaluation data ("test" data) and performance metrics for water temperature predictions from multiple modeling frameworks. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added physical constraint for...
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of Minnesota and Wisconsin. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added...
thumbnail
This dataset provides shapefile of outlines of the 68 lakes where temperature was modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes compiled water temperature data from a variety of sources, including the Water Quality Portal (Read et al. 2017), the North Temperate Lakes Long-TERM Ecological Research Program (https://lter.limnology.wisc.edu/), the Minnesota department of Natural Resources, and the Global Lake Ecological Observatory Network (gleon.org). This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
Maple syrup is produced from the sap of sugar maple collected in the late winter and early spring. Native American tribes have collected and boiled down sap for centuries, and the tapping of maple trees is a cultural touchstone for many people in the northeast and Midwest. Because the tapping season is dependent on weather conditions, there is concern about the sustainability of maple sugaring as climate changes throughout the region. Our research addresses the impact of climate on the quantity and quality of maple sap used to make maple syrup. Sap was sampled at 6 sites across the native range of sugar maple over 2 years as part of the ACERnet collaboration. At each site we sampled 15-25 mature sugar maple trees,...
thumbnail
This dataset includes "test data" compiled water temperature data from an instrumented buoy on Lake Mendota, WI and discrete (manually sampled) water temperature records from North Temperate Lakes Long-TERM Ecological Research Program (NTL-LTER; https://lter.limnology.wisc.edu/). The buoy is supported by both the Global Lake Ecological Observatory Network (gleon.org) and the NTL-LTER. The dataset also includes Lake Mendota model erformance as measured as root-mean squared errors relative to temperature observations during the test period. This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of Minnesota and Wisconsin. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added...
thumbnail
It is well recognized that the climate is warming in response to anthropogenic emission of greenhouse gases. Over the last decade, this has had a warming effect on lakes. Water clarity is also known to effect water temperature in lakes. What is unclear is how a warming climate might interact with changes in water clarity in lakes. As part of a project at the USGS Office of Water Information, several water clarity scenarios were simulated for lakes in Wisconsin to examine how changing water clarity interacts with climate change to affect lake temperatures at a broad scale. This data set contains the following parameters: year, WBIC, durStrat, max_schmidt_stability, mean_schmidt_stability_JAS, mean_schmidt_stability_July,...
thumbnail
Observed water temperatures from 1980-2018 were compiled for 68 lakes in Minnesota and Wisconsin (USA). These data were used as training data for process-guided deep learning models and deep learning models, and calibration data for process-based models. The data are formatted as a single csv (comma separated values) file with attributes corresponding to the unique combination of lake identifier, time, and depth. Data came from a variety of sources, including the Water Quality Portal, the North Temperate Lakes Long-Term Ecological Research Project, and digitized temperature records from the MN Department of Natural Resources.
thumbnail
Maple syrup is produced from the sap of sugar maple collected in the late winter and early spring. Native American tribes have collected and boiled down sap for centuries, and the tapping of maple trees is a cultural touchstone for many people in the northeast and Midwest. Because the tapping season is dependent on weather conditions, there is concern about the sustainability of maple sugaring as climate changes throughout the region. Our research addresses the impact of climate on the quantity and quality of maple sap used to make maple syrup. Sap was sampled at 6 sites across the native range of sugar maple over 2 years as part of the ACERnet collaboration. At each site we sampled 15-25 mature sugar maple trees,...
thumbnail
This dataset includes "test data" compiled water temperature data from an instrumented buoy on Sparkling Lake, WI and discrete (manually sampled) water temperature records from North Temperate Lakes Long-TERM Ecological Research Program (NTL-LTER; https://lter.limnology.wisc.edu/). The buoy is supported by both the Global Lake Ecological Observatory Network (gleon.org) and the NTL-LTER. The dataset also includes Sparkling Lake model erformance as measured as root-mean squared errors relative to temperature observations during the test period. This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).


map background search result map search result map Wisconsin Lake Temperature Metrics Stable Clarity Sap Quantity at Study Sites in the Northeast Sap Quality at Study Sites in the Northeast Process-guided deep learning predictions of lake water temperature Process-guided deep learning water temperature predictions: 1 Spatial data (GIS polygons for 68 lakes) Process-guided deep learning water temperature predictions: 3 Model inputs (meteorological inputs and ice flags) Process-guided deep learning water temperature predictions: 2 Model configurations (lake metadata and parameter values) Process-guided deep learning water temperature predictions: 4 Training data Process-guided deep learning water temperature predictions: 4c All lakes historical training data Process-guided deep learning water temperature predictions: 4a Lake Mendota detailed training data Process-guided deep learning water temperature predictions: 5 Model prediction data Process-guided deep learning water temperature predictions: 5c All lakes historical prediction data Process-guided deep learning water temperature predictions: 5a Lake Mendota detailed prediction data Process-guided deep learning water temperature predictions: 6 Model evaluation (test data and RMSE) Process-guided deep learning water temperature predictions: 6c All lakes historical evaluation data Process-guided deep learning water temperature predictions: 6a Lake Mendota detailed evaluation data Process-guided deep learning water temperature predictions: 6b Sparkling Lake detailed evaluation data Process-guided deep learning water temperature predictions: 3c All lakes historical inputs Process-guided deep learning water temperature predictions: 3a Lake Mendota inputs Process-guided deep learning water temperature predictions: 3b Sparkling Lake inputs Process-guided deep learning water temperature predictions: 6b Sparkling Lake detailed evaluation data Process-guided deep learning water temperature predictions: 3b Sparkling Lake inputs Process-guided deep learning water temperature predictions: 4a Lake Mendota detailed training data Process-guided deep learning water temperature predictions: 5a Lake Mendota detailed prediction data Process-guided deep learning water temperature predictions: 6a Lake Mendota detailed evaluation data Process-guided deep learning water temperature predictions: 3a Lake Mendota inputs Wisconsin Lake Temperature Metrics Stable Clarity Process-guided deep learning predictions of lake water temperature Process-guided deep learning water temperature predictions: 3 Model inputs (meteorological inputs and ice flags) Process-guided deep learning water temperature predictions: 2 Model configurations (lake metadata and parameter values) Process-guided deep learning water temperature predictions: 4 Training data Process-guided deep learning water temperature predictions: 4c All lakes historical training data Process-guided deep learning water temperature predictions: 5 Model prediction data Process-guided deep learning water temperature predictions: 5c All lakes historical prediction data Process-guided deep learning water temperature predictions: 6 Model evaluation (test data and RMSE) Process-guided deep learning water temperature predictions: 6c All lakes historical evaluation data Process-guided deep learning water temperature predictions: 3c All lakes historical inputs Process-guided deep learning water temperature predictions: 1 Spatial data (GIS polygons for 68 lakes) Sap Quantity at Study Sites in the Northeast Sap Quality at Study Sites in the Northeast