Skip to main content
Advanced Search

Filters: Tags: {"type":"Organization"} (X)

4,148 results (20ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Schemes
Tags (with Type=Organization )
View Results as: JSON ATOM CSV
These data represent the extent of urbanization (for the year indicated) predicted by the model SLEUTH, developed by Dr. Keith C. Clarke, at the University of California, Santa Barbara, Department of Geography and modified by David I. Donato of the United States Geological Survey (USGS) Eastern Geographic Science Center (EGSC). Further model modification and implementation was performed at the Biodiversity and Spatial Information Center at North Carolina State University
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/1752-1688.12304/abstract): The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases...
We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (Pinus taeda) stands that are managed for timber production. Regional outbreaks of SPB occur in bursts resulting in elimination of entire stands and major economic loss. These outbreaks are often interspersed with decades of inactivity, making long-term modeling of SPB dynamics challenging. Forest management techniques, including thinning, have proven effective and are often recommended...
1) Raw parcel-level habitat data for the South Carolina Lowcountry surrounding Cape Romain NWR and Francis Marion NF, from current current conditions and for three projected sea-level rise futures based on SLAMM model outputs, NLCD land cover and the projected distribution of sea levels for 2050. 2) a table of parcel identification numbers (without georeference) with parcel size (Ha) and sub-group identity. 3) Optimization-model derived reserve design portfolios that define the Pareto-optimal frontier for each sub-group and for four budget scenarios along axes of reserve design benefits and risk.
USGS researchers from the North Central CASC and the Northern Prairie Wildlife Research Center recently collaborated with the National Park Service Climate Change Response Program to develop a new product that communicates the results from a collaborative effort—involving resource managers, subject-matter experts, and a larger climate change adaptation team—to identify potential climate impacts and management responses in Badlands National Park. The researchers used scenario planning and ecological simulation modeling to anticipate management challenges and identify options for Badlands National Park and adjacent federal and tribal lands in the coming decades (through 2050). The ecological simulation models help...
There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations...
thumbnail
Locating meadow study sitesMeadow centers as recorded in the ‘Copy of sitecords_areaelev from Caruthers thesis.xls’ file delivered by Debinski in November 2012 were matched to polygons as recorded in files ‘teton97map_area.shp’ and ‘gallatin97map_area.shp’ both also delivered by Debinski in November 2012.In cases where the meadow center did not fall within a meadow polygon, if there was a meadow polygon of the same meadow TYPE nearby (judgment was used here), the meadow center was matched with the meadow polygon of same meadow TYPE. In total, 29 of 30 Gallatin meadow sites and 21 of 25 Teton meadow sites were positively located.Identifying meadow pixels for analysisThe native MODIS 250-meter grid was reprojected...
Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI. Both types of MI was estimated as a ratio of...
Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI. Both types of MI was estimated as a ratio of...
thumbnail
Locating meadow study sitesMeadow centers as recorded in the ‘Copy of sitecords_areaelev from Caruthers thesis.xls’ file delivered by Debinski in November 2012 were matched to polygons as recorded in files ‘teton97map_area.shp’ and ‘gallatin97map_area.shp’ both also delivered by Debinski in November 2012.In cases where the meadow center did not fall within a meadow polygon, if there was a meadow polygon of the same meadow TYPE nearby (judgment was used here), the meadow center was matched with the meadow polygon of same meadow TYPE. In total, 29 of 30 Gallatin meadow sites and 21 of 25 Teton meadow sites were positively located.Identifying meadow pixels for analysisThe native MODIS 250-meter grid was reprojected...
The project team, funded by the NC CSC, worked in two river basins in southwestern Colorado (San Juan and Gunnison) to focus on five objectives: 1) understand social-ecological vulnerabilities, 2) create scenarios and models to facilitate decision making, 3) develop actionable adaptation strategies, 4) identify institutional arrangements needed for adaptation, and 5) document and transfer best practices. The team was interested in the intersection of the climate system, the ecological system, and the social system. Social and natural scientists worked together and with many stakeholders to achieve these objectives.
Climate policy developers and natural resource managers frequently desire high-resolution climate data to prepare for future effects of climate change. But they face a long-standing problem: the vast majority of climate models have been run at coarse resolutions—from hundreds of kilometers in global climate models (GCMs) down to 25–50 kilometers in regional climate models (RCMs).
Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI. Both types of MI was estimated as a ratio of...
The National Climate Assessment summarizes the impacts of climate change on the United States, now and in the future. A team of more than 300 experts guided by a 60-member Federal Advisory Committee produced the report, which was extensively reviewed by the public and experts, including federal agencies and a panel of the National Academy of Sciences. The report can be explored interactively at http://nca2014.globalchange.gov.
The Eastern Shoshone and Northern Arapaho Tribes on the Wind River Indian Reservation in Wyoming are preparing for drought and other climate fluctuations with help from a broad coalition of scientists. Read More: https://www.drought.gov/drought/sites/drought.gov.drought/files/media/whatisnidis/Newsletter/October%202015%20v4.pdf
Members of the Eastern Shoshone and Northern Arapaho Tribes have been working with an interdisciplinary team of social, ecological, and climate scientists from the North Central CSC, the High Plains Regional Climate Center, and the National Drought Mitigation Center along with other university and agency partners to prepare regular climate and drought summaries to aid in managing water resources on the Wind River Reservation and in surrounding areas.


map background search result map search result map Hydrological Analysis of Greater Yellowstone Ecosystem Montane Meadow Condition using MODIS data An analysis of montane meadow drying in the Greater Yellowstone Ecosystem using remotely sensed NDVI from the MODIS period of record (lsp metrics) Hydrological Analysis of Greater Yellowstone Ecosystem Montane Meadow Condition using MODIS data An analysis of montane meadow drying in the Greater Yellowstone Ecosystem using remotely sensed NDVI from the MODIS period of record (lsp metrics)