Skip to main content
Advanced Search

Filters: Tags: {"type":"Science Themes"} (X) > Types: Downloadable (X)

198 results (408ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Science Themes )
View Results as: JSON ATOM CSV
thumbnail
The absolute difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T4P10 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data is then used as input to the model.
Data Sources, inputs, parameters, and code for the MACA-VIC project final report. Consists of 3 tasks: 1. Consists of comparing results of the indexing method MTCLIM to estimate incoming short and long wave radiation, to observations, to BSRN station data, and to three Ameriflux towers in the Pacific Northwest. 2. Reports on forcing VIC with downscaled GCM forcings, with variations in two forcing variables: downward shortwave radiation (rad) and specific humidity (qair). For this task we consider the MACA downscaling method. Three cases are reported: a) both variables are downscaled; b) rad is indexed and qair is downscaled; c) rad is downscaled and qair is indexed. 3. Reports on forcing VIC with downscaled...
thumbnail
PCIC offers statisically downscaled daily climate scenarios, at a gridded resolution of 300 arc-seconds (0.0833 degrees, or roughly 10 km) for the simulated period of 1950-2100. The variables available include minimum temperature, maximum temperature, and precipitation. These downscaling outputs are based on Global Climate Model (GCM) projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and historical daily gridded climate data for Canada.​​ Statistical properties and spatial patterns of the downscaled scenarios are based on this gridded observational dataset, which represents one approximation of the actual historical climate. Gridded values may differ from climate stations and biases may...
thumbnail
Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011-2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 m × 40 m forest plots, situated on the western slope of the Cascade Range, include un-thinned second-growth coniferous forest as control treatments, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old growth forest. Together, this publicly available dataset includes snow depth observations from manual snow courses, distributed snow duration observations...
thumbnail
We used land cover projections for 2011 and 2050 of two scenarios derived from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES). Scenario A1B emphasizes economic growth with a global orientation and scenario B2 focuses on environmental sustainability with a regional view. Our study area included counties within the southern Great Plains ecoregion in Oklahoma, Texas, and New Mexico. We calculated changes in landscape connectivity (dECA) between 2011 and 2050 for different species groups and landscape scenarios. We also calculated changes in habitat suitability (dA). We assessed the degree to which changes in landscape connectivity were influenced by changes in grassland...
thumbnail
Within large-river ecosystems, floodplains serve a variety of important ecological functions. A recent survey of 80 managers of floodplain conservation lands along the Upper and Middle Mississippi and Lower Missouri Rivers in the central United States found that the most critical information needed to improve floodplain management centered on metrics for characterizing depth, extent, frequency, duration, and timing of inundation. These metrics can be delivered to managers efficiently through cloud-based interactive maps. To calculate these metrics, we interpolated an existing one-dimensional HEC-RAS hydraulic model for the Lower Missouri River, which simulated water surface elevations at cross sections spaced (<1...
thumbnail
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
This dataset represents results from this study attributed to the Hydrologic Unit Code (HUC) 12 watershed boundaries. Human impacts occurring throughout the Northeast and Midwest United States, including urbanization, agriculture, and dams, have multiple effects on the region’s streams which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project met that need by integrating results...
thumbnail
Cold-induced mortality is a key factor driving mountain pine beetle( Dendroctonus ponderosae) population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following winter. Using observed SCPs of field-collected D. ponderosae larvae throughout the developmental season and associated phloem temperatures, we developed a mechanistic model that describes the SCP distribution of a population as a function of daily changes in the temperature-dependent processes leading to gain and loss of cold tolerance. It is based on...
thumbnail
The following files are designed to be run using the Path Landscape Model software, version 3.0.4. Later versions of the software cannot run these files. To get a copy of this software, please contact Apex RMS at path@apexrms.com. 1) Path models MUST be run with the provided .MCM and .trd mulitplier files to apply the required transition probability adjustments for procesess such as insect outbreaks, wildfire, and climate change trends. Each Path database is set up with three folders: - The 'Common' folder contains a single Path scenario (also named 'Common'). The Transitions tab within the Common scenario contains the climate-smart STM. - The 'Multipliers' folder contains multipliers specific to each ownership-allocation...
thumbnail
The absolute difference between mean modeled snow-water-equivalent on March 28 for the reference period and mean modeled snow-water-equivalent on March 13 for the T2P10 climate change scenario, which are the dates of peak basin-integrated SWE for each period, respectively. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T2P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
These two datasets represent a normalized least-cost corridor mosaic (see WHCWG 2010 and McRae and Kavanagh 2011) calculated using (1) temperature gradients and a landscape integrity resistance raster, or (2) temperature gradients only, following the climate gradient linkage-modeling methods outlined in Nuñez (2011), using an adapted version of the Linkage Mapper software (McRae and Kavanagh 2011). This GIS dataset is one of several climate connectivity analyses produced by Tristan Nuñez for a Master's thesis (Nuñez 2011). The dataset was produced in part to assist the Climate Change Subgroup of the Washington Wildlife Habitat Connectivity Working Group (WHCWG). The core areas in the map lie in Washington State...
thumbnail
The absolute difference between mean modeled snow-water-equivalent on March 28 for the reference period and mean modeled snow-water-equivalent on March 13 for the T2P10 climate change scenario, which are the dates of peak basin-integrated SWE for each period, respectively. Reference period: the period 1989 – 2009 for the McKenzie River Basin domain, and 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T2P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data...
This archive contains two files. For Measure Discharges, each tab contains the data and pacific daylight standard time the discharge measurement was taken. The discharge (Q), is calculated using the rating curve developed from measured discharges and water heights recorded from the staff gage. For Modeled Discharges, the following spreadsheets contain discharges modeled from RHYSSES and corrected using measured discharges. The spreadsheets labeled 'discharge' contain the corrected modeled discharge for each flow scenario, from Boulder and Anderson Creek. The spreadsheets labeled 'conversion' contain the calibration relationship used to correct the modeled discharges.
thumbnail
Mean modeled snow-water-equivalent (meters) on April 1 for the T2 climate change scenario. T2 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The absolute difference between mean modeled snow-water-equivalent on March 28 for the reference period and mean modeled snow-water-equivalent on February 20 for the T4 climate change scenario, which are the dates of peak basin-integrated SWE for each period, respectively. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
Mean modeled snow-water-equivalent (meters) on February 20, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T4P10 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data is then used as input to the model.
Exposure (vulnerability) index for the future time period (2041-2060) representing projected climate conditions from the Meterological Research Institute's Coupled Atmosphere-Ocean General Circulation Model (MRI-CGCM3) and the rcp45 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10 (5 -...


map background search result map search result map Modeled snow-water-equivalent, absolute difference between seasonal peak historical and projected values under T2p10 climate change scenario, McKenzie River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected April 1 values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected April 1 values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T2P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Observations of distributed snow depth and snow duration within diverse forest structures in a maritime mountain watershed Modeling cold tolerance in the mountain pine beetle (Dendroctonus ponderosae) Statistically down-scaled climate scenarios for the simulated period of 1950-2100 for the Northwest US and British Columbia, Canada Normalized least-corridor mosaic using temperature gradients and landscape integrity resistance Potential climate change impacts on grizzly bear connectivity in the U.S. Northern Rockies Fishtail huc12: Indices and supporting data characterizing the current (1961-2000) and future (2041-2080) risk to fish habitat degradation in the Northeast Climate Science Center region Land use change and fragmentation of Theodore Roosevelt Greater Wildland Ecosystems (GWE) using LANDFIRE data Future changes in landscape connectivity for grassland species in the southern Great Plains based on a scenario of future land-use change that focuses on environmental sustainability with a regional view Quantify Depth of Inundation for Floodplains on the Missouri River for a Calculated Return Interval of 5 Years Future Spotted Owl Habitat Scenarios, Northwest Washington Study Area, 2007-2096 Esri Service Definition file containing all SPC rasters (PROSPER) Observations of distributed snow depth and snow duration within diverse forest structures in a maritime mountain watershed Modeled snow-water-equivalent, absolute difference in historical and projected April 1 values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected April 1 values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T2P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference between seasonal peak historical and projected values under T2p10 climate change scenario, McKenzie River Basin, Oregon [full and clipped versions] Future Spotted Owl Habitat Scenarios, Northwest Washington Study Area, 2007-2096 Quantify Depth of Inundation for Floodplains on the Missouri River for a Calculated Return Interval of 5 Years Land use change and fragmentation of Theodore Roosevelt Greater Wildland Ecosystems (GWE) using LANDFIRE data Modeling cold tolerance in the mountain pine beetle (Dendroctonus ponderosae) Normalized least-corridor mosaic using temperature gradients and landscape integrity resistance Statistically down-scaled climate scenarios for the simulated period of 1950-2100 for the Northwest US and British Columbia, Canada Potential climate change impacts on grizzly bear connectivity in the U.S. Northern Rockies Future changes in landscape connectivity for grassland species in the southern Great Plains based on a scenario of future land-use change that focuses on environmental sustainability with a regional view Esri Service Definition file containing all SPC rasters (PROSPER) Fishtail huc12: Indices and supporting data characterizing the current (1961-2000) and future (2041-2080) risk to fish habitat degradation in the Northeast Climate Science Center region