Skip to main content
Advanced Search

Filters: Tags: {"type":"Status"} (X)

4,883 results (35ms)   

View Results as: JSON ATOM CSV
Although climate change is predicted to place mountain-top and other narrowly endemic species at severe risk of extinction, the ecological processes involved in such extinctions are still poorly resolved. In addition, much of this biodiversity loss will likely go unobserved, and therefore largely unappreciated. The Haleakalā silversword is restricted to a single volcano summit in Hawai‘i, but is a highly charismatic giant rosette plant that is viewed by 1–2 million visitors annually. We link detailed local climate data to a lengthy demographic record, and combine both with a population-wide assessment of recent plant mortality and recruitment, to show that after decades of strong recovery following successful management,...
A Tool for Understanding Climate Change and Invasive Species Impacts on Watersheds Final Report.
The Weather Research and Forecasting (WRF) model has been configured as a regional climate model for the Hawaii region (HRCM) to assess the uncertainties associated with the pseudo–global warming (PGW) downscaling method using different warming increments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) model experiments. Results from 15-km downscaling experiments using warming increments from 10 individual CMIP5 models for the two warming scenarios representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) are compared with experiments using multimodel mean warming increments. The results show that changes in 2-m temperatures, 10-m wind speed, rainfall, water vapor path, and trade wind...
Strong evidence on climate change underscores the need for actions to reduce the impacts of sea-level rise. Global mean sea level may rise 0.18–0.48 m by mid-century1, 2 and 0.5–1.4 m by the end of the century2. Besides marine inundation, it is largely unrecognized that low-lying coastal areas may also be vulnerable to groundwater inundation, which is localized coastal-plain flooding due to a rise of the groundwater table with sea level. Measurements of the coastal groundwater elevation and tidal influence in urban Honolulu, Hawaii, allow estimates of the mean water table, which was used to assess vulnerability to groundwater inundation from sea-level rise. We find that 0.6 m of potential sea-level rise causes substantial...
Final report for the project titled “Field Monitoring and Analysis of Climate Change Across a Wide Range of Ecosystems in Hawai‘i”
A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land manage-ment priority. Common- garden experiments were established at three sites with seed-lings from 55 source- populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess dif-ferences in survival between gardens and populations. We found evidence of adap-tive genetic variation for survival. Survival...
On August 25, 2015 speaker Matt Germino presented on his work restoring sagebrush in the Great Basin. Shrubs are ecosystem foundation species in most of the Great Basin’s landscapes. Most of the species, including sagebrush, are poorly adapted to the changes in fire and invasive pressures that are compounded by climate change. This presentation gives an overview of challenges and opportunities regarding restoration of sagebrush and blackbrush, focusing on climate adaptation, selection of seeds and achieving seeding and planting success. Results from Great Basin LCC supported research on seed selection and planting techniques are presented.
thumbnail
For the Green River Basin Landscape Conservation Design (GRB LCD) assessment, we mapped the vulnerability of the sagebrush ecosystem to oil and gas development for each 12-digit hydrologic unit. Using a vulnerability framework, we defined Sensitivity (S) as the multi-scale average of sagebrush ecosystem land cover derived from LANDFIRE Existing Vegetation Type (LANDFIRE 2014). Exposure (E) to oil and gas development was quantified as the average kernel density of active oil and gas wells at multiple scales. Potential Impact (PI) is the square root transformed product of oil and gas development exposure and sagebrush ecosystem sensitivity. Adaptive Capacity (AC) for sagebrush ecosystem was quantified as the inverse...
Nearshore bathymetry is a vital link that joins offshore water depths to coastal topography. Seamless water depth information is a critical input parameter for reliable storm surge models, enables the calculation of sediment budgets and is necessary baseline data for a range of coastal management decisions. Funding from the Western Alaska LCC resulted in the purchase of field equipment capable of shallow water measurements in rural settings, allowing collection of nearshore bathymetry around western Alaska communities. The resulting vector data shape files of nearshore bathymetry for Gambell, Savoonga, Golovin, Wales, Shismaref, and Hooper Bay are available by following the link below.
This project established a permafrost monitoring network in this region, providing a baseline of permafrost thermal regimes for assessing future change at a total of 26 automated monitoring stations. Stations have collected year-round temperature data from the active layer and the permafrost starting from the summer of 2011. The strong correspondence between spatial variability in permafrost thermal regime and an existing ecotype map allowed for the development of a map of ‘permafrost thermal classes’ for the broader study region. Further, the annual temperature data was used to calibrate models of soil thermal regimes as a function of climate, providing estimates of both historic and future permafrost thermal regimes...
thumbnail
FY2013The proposed project’s objective is to provide a scientific review of(1) current priority species management practices in Nevada, (2) status of our combined scientific knowledge of priority species’ needs and gaps in that knowledge, and(3) adequacy of current monitoring programs of priority species.The project builds on recent, well-researched species conservation plans for Nevada (GBBO 2010, NWPT 2012), and it will leverage funds that are already obligated to research on scientifically based disturbance buffer recommendations and to evaluate GBBO’s statewide landbird monitoring program, the Nevada Bird Count.The outcome of the proposed work will be an online open-source compendium document that summarizes...
thumbnail
Native grasslands have been reduced to a fraction of their original extent, with estimated total loss prior to the 1990s of 70% for prairie grassland (Federal Provincial and Territorial Governments of Canada 2010). Conversion of native grassland to cropland and tame hayfields or pasture has been one of the leading drivers of native grassland loss in North America. Degradation of native grasslands also continues in some areas due to changes in natural disturbance regimes such as fire suppression and intensive prolonged cattle grazing, threats from invasive non-native species, fragmentation, intensification of agriculture, and economic development associated with population growth(Federal Provincial and Territorial...
thumbnail
This carbon sequestration research is part of a new pilot grassland conservation program to protect at-risk grasslands from conversion to cropland in the northern Great Plains. Natural resources partners have leveraged more than $3 million in private and federal funding to support an innovative program that extends protection of privately-owned grasslands that have expired under the Conservation Reserve Program (CRP). In the past two years alone, the number of CRP acres nationally has dropped from 31.2 million to 27 million. Of the 4.2-million-acre-decline, lands lost in North Dakota and Montana accounted for 1.6 million acres, or 38 percent. The program aims to encourage private landowners to conserve CRP grasslands...
Scientists will employ land use change build-out scenaria for future energy development demand to quantify future impacts on forest habitats across the Appalachian LCC. We propose to create maps of wind, oil and gas, and coal development potential for the entire study area and use these maps and published projections from federal and state land management agencies to model future build-out scenaria.
Comments from Technical Oversight Team regarding Energy Forecast Project Progress Report in Quarter 1, 2013.
A new study and online mapping tool by the Appalachian Landscape Conservation Cooperative (LCC) and The Nature Conservancy are intended to inform discussions among conservation agencies and organizations, industry, policy makers, regulators and the public on how to protect essential natural resources while realizing the benefits of increased domestic energy production.
County distribution for the climate change vulnerability of 41 newly assessed species is available for download. The entire package is available at the link provided.
These results are a compilation of climate change vulnerability assessments in the southeastern portion of the LCC, covering the area from southern West Virginia, south to Alabama, west to eastern Kentucky and Tennessee. Hyperlinks to additional information are separated into two additional spreadsheets, one for aquatic and subterranean, and another for terrestrial species.
Elizabeth Byers and Sam Norris. 2011. Climate change vulnerability assessment of species of concern in West Virginia. West Virginia Division of Natural Resources, Elkins, WV.This project assessed and ranked the relative climate change vulnerability of 185 animal and plant species in West Virginia.
thumbnail
Provisional Tennessee State Wildlife Action Plan (TN-SWAP) terrestrial habitat priorities versus results of the population growth model developed by the Tennessee Chapter of The Nature Conservancy, 2008, converted to percent projected developed landcover in the year 2040. Spatial growth model was developed using population growth projections from the University of Tennessee Center for Business and Economic Research (UT-CBER), county urban growth boundaries, 2000 census blocks, and various ancillary datasets.


map background search result map search result map Evaluating Species Management Guidance and Monitoring Programs for the Great Basin in Nevada Carbon sequestration research to benefit grassland conservation in the northern Great Plains Comparative Analysis of Native Prairie Spatial Delineation Methods in the Prairie Ecozone Vulnerability of Sagebrush Ecosystem to Oil and Gas Development for the Green River Basin Provisional Tennessee State Wildlife Action Plan Potential Urban Growth Carbon sequestration research to benefit grassland conservation in the northern Great Plains Provisional Tennessee State Wildlife Action Plan Potential Urban Growth Evaluating Species Management Guidance and Monitoring Programs for the Great Basin in Nevada Vulnerability of Sagebrush Ecosystem to Oil and Gas Development for the Green River Basin Comparative Analysis of Native Prairie Spatial Delineation Methods in the Prairie Ecozone