Skip to main content
Advanced Search

Filters: Tags: {"type":"Theme"} (X) > partyWithName: Peter S Coates (X) > Categories: Data (X) > Types: Downloadable (X) > partyWithName: Michael P Chenaille (X)

30 results (21ms)   

View Results as: JSON ATOM CSV
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California. HSIs were calculated for spring (mid-March to June), summer (July to mid-October), and winter (November to March) sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
Predicted common raven (Corvus corax) impacts within greater sage-grouse (Centrocercus urophasianus) concentration areas across the Great Basin, USA, 2007–2016. Predicted impacts were based on a raven density of great than or equal to 0.40 (ravens per square kilometer) which corresponded to below-average survival rates of sage-grouse nests. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive native predator on a sensitive native prey species within the shifting avian community of the North American Great Basin. Biological Conservation,...
thumbnail
We evaluated the expected success of habitat recovery in priority areas under 3 different restoration scenarios: passive, planting, and seeding. Passive means no human intervention following a fire disturbance. Under a planting scenario, field technicians methodically plant young sagebrush saplings at the burned site. The seeding scenario involves distributing large amounts of sagebrush seeds throughout the affected area.
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
Map of cumulative 38-day nest survival predicted from a Bayesian hierarchical shared frailty model of sage-grouse nest fates. The midpoint of coefficient conditional posterior distributions of 38-day nest survival were used for prediction at each 30 meter pixel across the landscape.
thumbnail
We evaluated nest site selection and nest survival both before and after a fire disturbance occurred. We then combined those surfaces to determine the areas which were most heavily impacted by the fire.
thumbnail
These data represent an resource selection function (RSF) for translocated sage-grouse in North Dakota during the summer. Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution,...
thumbnail
Ranked index of model-projected nest site selection integrated with nesting productivity (i.e., nest survival), demonstrating the spatial distribution of adaptive vs. maladaptive habitat selection at each 30 m pixel. Hierarchical models of nest selection and survival were fit to landscape covariates within a Bayesian modeling framework in Nevada and California from 2009 through 2017 to develop spatially explicit information about nest site selection and survival consequences across the landscape. Habitat was separated into 16 classes ranking from high (1) to low (16). Habitat ranked highest where the top nest selection and survival classes intersected (adaptive selection), whereas the lowest rank occurred where...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during summer (July to mid-October), which is a surrogate for habitat conditions during the sage-grouse brood-rearing period.
thumbnail
This shapefile represents proposed management categories (Core, Priority, General, and Non-Habitat) derived from the intersection of habitat suitability categories and lek space use. Habitat suitability categories were derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California formed from the multiplicative product of the spring (mid-March to June), summer (July to mid-Octoer), and winter (November to March) HSI surfaces.
thumbnail
A raster identifying previously burned areas as being 1) recovered (to sagebrush-dominant ecosystem), 2) recovering, or 3) transitioned to annual grass-dominated.
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during spring (mid-March to June), which is a surrogate for habitat conditions during the sage-grouse breeding and nesting period.
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
This shapefile represents proposed management categories (Core, Priority, General, and Non-Habitat) derived from the intersection of habitat suitability categories and lek space use. Habitat suitability categories were derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California formed from the multiplicative product of the spring (mid-March to June), summer (July to mid-October), and winter (November to March) HSI surfaces.
thumbnail
These data represent an resource selection function (RSF) for translocated sage-grouse in North Dakota during the brooding season. Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’...
thumbnail
Greater sage-grouse (Centrocercus urophasianus) are at the center of state and national land use policies largely because of their unique life-history traits as an ecological indicator for health of sagebrush ecosystems. These data represent an updated population trend analysis and Targeted Annual Warning System (TAWS) for state and federal land and wildlife managers to use best available science to help guide current management and conservation plans aimed at benefitting sage-grouse populations range-wide. This analysis relied on previously published population trend modeling methodology from Coates and others (2021, 2022) and includes population lek count data from 1960-2023. Bayesian state-space models estimated...
thumbnail
This raster dataset depicts phase 1 pinyon-juniper expansion , where shrubs and herbs are the dominant vegetation and conifers occupy greater than zero percent to ten percent, intersecting documented sage-grouse habitat management categories (Coates et al., 2016a, Coates et al., 2016b). These data support the following publication: K. Benjamin Gustafson, Peter S. Coates, Cali L. Roth, Michael P. Chenaille, Mark A. Ricca, Erika Sanchez-Chopitea, Michael L. Casazza, Using object-based image analysis to conduct high- resolution conifer extraction at regional spatial scales, International Journal of Applied Earth Observation and Geoinformation, Volume 73, December 2018, Pages 148-155, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2018.06.002....


map background search result map search result map Sage-grouse habitat management categories within phase 1 Pinyon-Juniper expansion in Nevada and northeastern California, derived from 2016 and 2017 Raster Products Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Composite Habitat Suitability Index Raster Dataset Composite Management Categories Shapefile Spring Season Habitat Categories Shapefile Spring Season Habitat Suitability Index Raster Dataset Summer Season Habitat Suitability Index Raster Dataset Winter Season Habitat Categories Shapefile Winter Season Habitat Suitability Index Raster Dataset State Transition Model of Cumulative Burned Area to Annual Grass in the Great Basin Region of the Western U.S. Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Greater Sage-grouse Nest Survival, Nevada and California 2019 Greater Sage-grouse Nest Site Source-Sink, Nevada and California 2019 Brooding RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Summer RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Mean Annual Population Growth Rate and Ratio Change in Abundance of Common Raven within Level I Ecoregions of the United States and Canada, 1966 - 2018 Mean Annual Population Growth Rate and Ratio Change in Abundance of Common Raven within Level II Ecoregions of the United States and Canada, 1966 - 2018 Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Trends and a Targeted Annual Warning System for Greater Sage-Grouse in the Western United States (ver. 3.0, February 2024) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Brooding RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Summer RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Composite Habitat Suitability Index Raster Dataset Spring Season Habitat Suitability Index Raster Dataset Summer Season Habitat Suitability Index Raster Dataset Winter Season Habitat Suitability Index Raster Dataset Winter Season Habitat Categories Shapefile Spring Season Habitat Categories Shapefile Composite Management Categories Shapefile Sage-grouse habitat management categories within phase 1 Pinyon-Juniper expansion in Nevada and northeastern California, derived from 2016 and 2017 Raster Products Greater Sage-grouse Nest Site Source-Sink, Nevada and California 2019 Greater Sage-grouse Nest Survival, Nevada and California 2019 Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) State Transition Model of Cumulative Burned Area to Annual Grass in the Great Basin Region of the Western U.S. Trends and a Targeted Annual Warning System for Greater Sage-Grouse in the Western United States (ver. 3.0, February 2024) Mean Annual Population Growth Rate and Ratio Change in Abundance of Common Raven within Level I Ecoregions of the United States and Canada, 1966 - 2018 Mean Annual Population Growth Rate and Ratio Change in Abundance of Common Raven within Level II Ecoregions of the United States and Canada, 1966 - 2018