Skip to main content
Advanced Search

Filters: Tags: {"type":"Theme"} (X) > partyWithName: Ecosystems (X) > Extensions: Raster (X) > Extensions: ArcGIS Service Definition (X)

4 results (12ms)   

View Results as: JSON ATOM CSV
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for tidal marsh areas around San Francisco Bay using the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). Survey-grade GPS survey data (6614 points), NAIP-derived Normalized Difference Vegetation Index, and original 1 m lidar DEM from 2010 were used to generate a model of predicted bias across tidal marsh areas. The predicted bias was then subtracted from the original lidar DEM and merged with the NOAA...
thumbnail
These data depict reptile species richness within the range of the Greater Sage-grouse. Species boundaries were defined as the total extent of a species geographic limits. This raster largely used species range data from "U.S. Geological Survey - Gap Analysis Project Species Range Maps CONUS_2001", however in order for a more complete picture of species richness, additional sources were used for species missing from the Gap Analysis program.
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for wetlands throughout Collier county using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (15,223 points), NAIP-derived Normalized Difference Vegetation Index (2010), a 10 m lidar DEM from 2007, and a 10 m canopy surface model were used to generate a model of predicted bias across marsh, mangrove, and cypress habitats. The predicted bias was then subtracted from...
thumbnail
This habitat model was developed to delineate suitable habitat for coastal cactus wren (Campylorhynchus brunneicapillus) in southern California. A primary purpose of the model is to identify potential restoration sites that may not currently support cactus patches required by wrens, but which are otherwise highly suitable. These are areas that could be planted with cactus to increase wren populations, an important management objective for many land managers. We used the Partitioned Mahalanobis D2 modeling technique to construct alternative models with different combinations of environmental variables. Variables were calculated at each point in the center of a 150 m x 150 m cell in a grid of points across the landscape....


    map background search result map search result map LEAN-corrected San Francisco Bay Digital Elevation Model, 2018 Reptile Richness in the Range of the Sage-grouse, Derived From Species Range Maps LEAN-Corrected Collier County DEM for wetlands Coastal Cactus Wren Habitat Suitability Model for Southern California (2015) LEAN-corrected San Francisco Bay Digital Elevation Model, 2018 LEAN-Corrected Collier County DEM for wetlands Coastal Cactus Wren Habitat Suitability Model for Southern California (2015) Reptile Richness in the Range of the Sage-grouse, Derived From Species Range Maps