Skip to main content
Advanced Search

Filters: Tags: {"type":"Water Science Field Team Keywords","name":"gw model"} (X) > Tags: {"type":"Water Science Field Team Keywords","name":"gw or sw"} (X) > Extensions: Project (X) > Extensions: Shapefile (X)

5 results (144ms)   

View Results as: JSON ATOM CSV
thumbnail
Problem The Village of Dryden, rural homeowners, farms, and businesses in the Virgil Creek Valley tap several confined sand and gravel aquifers in the Virgil Creek valley in the town of Dryden . The valley contains a large moraine with complex stratigraphy consisting of continuous and discontinuous layers of till, lake deposits, and glaciofluvial sand and gravel. Sand and gravel units form the aquifers in the valley-fill deposits. There are at least three extensive confined aquifer units at various depths. However, little is known about (1) the location of recharge and discharge areas, (2) direction of groundwater flow, (3) extent of hydraulic connection between aquifer units, and (4) extent of surface- and ground-water...
thumbnail
Introduction High nitrate concentrations are a common concern among many purveyors, including the Suffolk County Water Authority (SCWA), the largest supplier of water to residents in Suffolk County. Typically, the amount of nitrate in groundwater is related to land use, where the greatest concentrations are observed in agricultural regions. In many areas, the nitrate concentration has increased steadily in recent years, even in areas that are no longer farmed and are now sewered. A statistical analysis for trends of over 20 years in nitrate concentration data from SCWA wells is needed to determine the susceptibility of supply-wells to exceed the Maximum Contaminant Level (MCL) for nitrate. This information is essential...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Contaminants, Natural, Contaminants, Natural, Contaminants, natural, Cooperative Water Program, GW Model, All tags...
thumbnail
Background The North Atlantic Coastal Plain (NACP) covers a land area of approximately 34,000 mi 2 along the eastern seaboard of the United States from Long Island, N.Y., southward to the northern portion of North Carolina. This area is underlain by a thick wedge of sedimentary deposits that form a complex groundwater system in which the sands and gravels function as confined aquifers, and the silts and clays function as confining units. These confined aquifers of the NACP constitute a major source of water for public and domestic supply for the nearly 27 million people living in the region, as well as being important source of water for industrial and agricultural purposes. Increases in population and changes...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Cooperative Water Program, Delaware, Focused Assessments, Focused Assessments, Focused Assessments, All tags...
thumbnail
Problem The ground-water flow system underlying the Manhasset Neck Peninsula, which provides potable water to the local population, consists of a complex assemblage of Pleistocene- and Cretaceous-age sediments that form five aquifers and at least two confining units. Recent hydrogeologic mapping in Manhasset Neck indicates significant glacial erosion of the Magothy aquifer, Raritan Clay, and Lloyd aquifer, and several gaps in the confining units that overlie the North Shore and Lloyd aquifers. Five areas of salt-water intrusion have been delineated, two of which are considered active. Several public-supply wells on the Manhasset Neck Peninsula have been shut down in the past as a result of saltwater intrusion....
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Complete, Completed, Cooperative Water Program, GW Model, GW Model, All tags...
thumbnail
Problem - The entire Tug Hill glacial aquifer is a 47-mile-long, crescent-shaped mixture of glacial deposits of predominantly sand and gravel on the western side of the Tug Hill Plateau in Jefferson, Oswego, and Oneida Counties in north central New York. The Tug Hill aquifer can be divided into three parts (northern, central, and southern) based on geohydrological setting, depositional history, and type of glacial deposits (fig. 1). In this study, the name “Tug Hill glacial aquifer” refers only to the 29-mi-long northern and central parts of the Tug Hill aquifer. (The southern part was not included in this investigation.) For this study, the division between the northern and central parts of the aquifer was placed...


    map background search result map search result map Trends in Nitrate Concentrations in Public Water-Supply Wells, Suffolk County, New York, 1982-2008 Development of a Ground-Water Flow Model for the Manhasset Neck Peninsula, Nassau County, New York Hydrogeology of the Virgil Creek Valley in the Town of Dryden, Tompkins County, New York Geohydrology and Water Quality of the Northern and Central Parts of the Tug Hill Glacial Aquifer, Jefferson and Oswego Counties, North Central New York Groundwater Availability of the Northern Atlantic Coastal Plain Hydrogeology of the Virgil Creek Valley in the Town of Dryden, Tompkins County, New York Development of a Ground-Water Flow Model for the Manhasset Neck Peninsula, Nassau County, New York Geohydrology and Water Quality of the Northern and Central Parts of the Tug Hill Glacial Aquifer, Jefferson and Oswego Counties, North Central New York Trends in Nitrate Concentrations in Public Water-Supply Wells, Suffolk County, New York, 1982-2008 Groundwater Availability of the Northern Atlantic Coastal Plain