Skip to main content
Advanced Search

Filters: Tags: Aquifers (X) > partyWithName: Water Resources (X)

136 results (83ms)   

View Results as: JSON ATOM CSV
thumbnail
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2019. It was created using water-level measurements from 2,741 wells measured in both the predevelopment period (about 1950) and in 2019, the latest available static water level measured in 2015 to 2018 from 71 wells in New Mexico and using other published information on water-level change in areas with few water-level...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Specific yield ranges from near zero to 30 percent (Gutentag and others, 1984). This data set was generated in ESRI ArcInfo Workstation Version...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2011. This digital...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digital water-level-change contours for the High Plains aquifer in the central United States, predevelopment (about 1950) to 2007. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota,...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digital polygons of a constant hydraulic conductivity value for the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma. Ground water in 710 square miles of Quaternary-age alluvial and terrace deposits along the North Canadian River is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digitized polygons of constant recharge values for the Rush Springs aquifer in western Oklahoma. This area encompasses all or part of Blaine, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Stephens, and Washita Counties. For the purposes of modeling the ground-water flow in the Rush Springs aquifer, Mark F. Becker (U.S. Geological Survey, written commun., 1997) defined the Rush Springs aquifer to include...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digital polygons of constant recharge rates for the High Plains aquifer in Oklahoma. This area encompasses the panhandle counties of Cimarron, Texas, and Beaver, and the western counties of Harper, Ellis, Woodward, Dewey, and Roger Mills. The High Plains aquifer underlies approximately 7,000 square miles of Oklahoma and is used extensively for irrigation. The High Plains aquifer is a water-table aquifer...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digitized water-level elevation contours for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water that underlies about 2,320-square miles of parts of Osage, Pawnee, Payne, Creek, Lincoln, Okfuskee, and Seminole Counties. Approximately 75 percent of the water withdrawn from the Vamoosa-Ada aquifer is for municipal use. Rural domestic use and water for stock...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digitized polygons of constant hydraulic conductivity values for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately 193,000 acres and supplies ground water for irrigation, domestic, and industrial purposes in Beckham, Custer, Roger Mills, and Washita Counties along the divide between the Washita and Red River basins. The Elk City aquifer consists of the Elk City Sandstone...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents water-level change in the High Plains aquifer of the United States from 2005 to 2009, in feet. The High Plains aquifer underlies 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer's saturated thickness ranges from near zero to about 1,200 feet (Weeks and Gutentag, 1981). Water-level declines...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents the saturated thickness of the High Plains aquifer of the United States, 2009, in feet. The High Plains aquifer underlies approximately 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer's saturated thickness ranges from near zero to about 1,200 feet (Weeks and Gutentag, 1981). Water-level...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
This dataset is a point shapefile of wells measured for the potentiometric surface maps of the Mississippi River Valley alluvial aquifer (MRVA) in Spring 2016, 2018, and 2020. The data provided for each well considered in the applicable potentiometric surface map are the water-level date, altitude [relative to the North American vertical datum of 1988 (NAVD88)], a useYYYY code (which is positive if the water level was used in the potentiometric surface map for that year), a use comment (which is populated for water levels not used), and the water-level change values, for 2016-18, 2018-20, and 2016-20 for water levels with positive useYYYY codes for the applicable years. The data provided for each streamgage considered...
thumbnail
This dataset is a raster surface, in feet, of the depth to water, spring 2020, Mississippi River Valley alluvial aquifer (MRVA). The raster cell size is 1,000 meters (3,280.8 ft). The raster was interpolated using (1) depth-to-water (GW_D2W) data from wells and (2) an assumed value of zero for depth to water at streamgages (SW_D2W) because the precise depth to groundwater at the streamgage is not known..The streamgage data is used only when it appears the regional aquifer and surface water are hydrologically connected.
thumbnail
Groundwater residence times were simulated for the major regional aquifers of the Northern Atlantic Coastal Plain aquifer system from New York to North Carolina using particle tracking in a regional groundwater flow model. Millions of particles were distributed throughout the aquifers of the North Atlantic Coastal Plain in a MODFLOW model with a volume-weighted algorithm, then tracked backwards using MODPATH6 (Pollock, 2012) until termination of their paths at their sources of origin, usually the simulated water table. Particles were tracked under simulated transient hydrologic conditions from the reference time of January 1, 2018 backwards to 1900, then under simulated steady-state conditions prior to 1900 until...
thumbnail
Confined (or buried) aquifers overlain by till confining units are used to supply drinking water to millions of people. Till confining units are typically conceptualized as having very low potential for transmitting water. Thus, buried aquifers are thought to be less susceptible to surface contamination, but may recharge very slowly and may be prone to unsustainable groundwater withdrawals. Quantification of the recharge (leakage) rate through till is essential to understanding the long-term sustainability of groundwater withdrawals from buried aquifers and yet few data exist on the hydraulic properties of till and groundwater flux through till. The information contained in this data release is generated from field...
thumbnail
The High Plains aquifer extends from about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is comprised of water-level measurements from 7,698 wells measured in both 2015 and 2017, which were used to map water-level changes, 2015 to 2017. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
thumbnail
This data release contains water level data and analytical results from slug tests performed at 12 wells at Badger Army Ammunition Plant (BAAP), Sauk County, Wisconsin. Water-level data, representing the displacement and recovery of groundwater levels with time in wells during slug tests, are provided in comma delimited files. Analytical results are provided in AQUTESOLV files (*.aqt files) and *.pdf summary files. The methods used and results from this work are summarized in the USGS Scientific Investigation report by Haserodt and others, 2023: https://doi.org/10.3133/sir20235040.
thumbnail
This dataset is a raster surface, in feet, of the depth to water, spring 2016, Mississippi River Valley alluvial aquifer (MRVA). The raster cell size is 1,000 meters (3,280.8 ft). . The raster was interpolated using (1) depth-to-water (GW_D2W) data from wells and (2) an assumed value of zero for depth to water at streamgages (SW_D2W) because the precise depth to groundwater at the streamgage is not known. The streamgage data is used only when it appears the regional aquifer and surface water are hydrologically connected.


map background search result map search result map Geochemical data, water-level data, and slug test analysis results from till confining units and confined aquifers in glacial deposits near Akeley, Cromwell, Litchfield, and Olivia, Minnesota, 2015-2018 Statistical summaries of simulated groundwater residence times for the 10 regional aquifers of the Northern Atlantic Coastal Plain aquifer system, at a 1 square-mile grid resolution F04_wlc161820_Water-level change, spring to spring, 2016-18, 2018-20, 2016-20, Mississippi River Valley alluvial aquifer, in feet Slug test analysis results from unconsolidated and bedrock aquifers at Badger Army Ammunition Plant, Sauk County, Wisconsin, 2020 F05_hpwlcp1517pt Water-level change data used to map water-level changes in the High Plains aquifer, 2015 to 2017 F01_d2w2016 Depth to water, spring 2016, Mississippi River Valley alluvial aquifer, raster format, in feet F03_d2w2020_Depth to water, spring 2020, Mississippi River Valley alluvial aquifer, raster format, in feet DS-777 Average Annual Precipitation Data, 2000 to 2009, in inches estimated from an Inverse-Distance-Weighted (IDW) interpolation, for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Potential Evapotranspiration, 2000 to 2009, in inches estimated from the National Weather Service (NWS) Snow Accumulation and Ablation (SNOW-17) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2007 Saturated thickness, High Plains aquifer, 2009 Specific yield, High Plains aquifer Water-level change, High Plains aquifer, 2005 to 2009 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2011 Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma Digital data sets that describe aquifer characteristics of the Elk City aquifer in western Oklahoma Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma Digital data sets that describe aquifer characteristics of the Rush Springs aquifer in western Oklahoma F01_hpwicpd19t_Raster dataset of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2019 Slug test analysis results from unconsolidated and bedrock aquifers at Badger Army Ammunition Plant, Sauk County, Wisconsin, 2020 Digital data sets that describe aquifer characteristics of the Elk City aquifer in western Oklahoma Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma Digital data sets that describe aquifer characteristics of the Rush Springs aquifer in western Oklahoma Geochemical data, water-level data, and slug test analysis results from till confining units and confined aquifers in glacial deposits near Akeley, Cromwell, Litchfield, and Olivia, Minnesota, 2015-2018 Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma F04_wlc161820_Water-level change, spring to spring, 2016-18, 2018-20, 2016-20, Mississippi River Valley alluvial aquifer, in feet F01_d2w2016 Depth to water, spring 2016, Mississippi River Valley alluvial aquifer, raster format, in feet F03_d2w2020_Depth to water, spring 2020, Mississippi River Valley alluvial aquifer, raster format, in feet Statistical summaries of simulated groundwater residence times for the 10 regional aquifers of the Northern Atlantic Coastal Plain aquifer system, at a 1 square-mile grid resolution F05_hpwlcp1517pt Water-level change data used to map water-level changes in the High Plains aquifer, 2015 to 2017 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2007 Saturated thickness, High Plains aquifer, 2009 Specific yield, High Plains aquifer Water-level change, High Plains aquifer, 2005 to 2009 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2011 F01_hpwicpd19t_Raster dataset of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2019 DS-777 Average Annual Precipitation Data, 2000 to 2009, in inches estimated from an Inverse-Distance-Weighted (IDW) interpolation, for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Potential Evapotranspiration, 2000 to 2009, in inches estimated from the National Weather Service (NWS) Snow Accumulation and Ablation (SNOW-17) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming