Skip to main content
Advanced Search

Filters: Tags: Coos Bay (X) > Categories: Data (X)

19 results (13ms)   

Filters
Date Range
Extensions
Types
Contacts
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
To determine inundation patterns and calculate site-specific tidal datums, we deployed water level data loggers (Model 3001, Solinst Canada Ltd., Georgetown, Ontario, Canada and Model U-20-001-01-Ti, Onset Computer Corp., Bourne, MA, USA) at all sites over the study period. Each site had one or two loggers (n = 16). We placed loggers at the mouth and upper reaches of second-order tidal channels to capture high tides and determine seasonal inundation patterns. Water loggers collected water level readings every six minutes starting on the date of deployment and continuing to the present. We used data from the lowest elevation logger at each site to develop local hydrographs and inundation rates. We surveyed loggers...
thumbnail
The research was conducted at nine tidal marshes in coastal estuaries spanning the Washington and Oregon coastlines from Padilla Bay in northern Washington to Bandon located at the mouth of the Coquille River in southern Oregon. We performed bathymetric surveys using a shallow-water echo-sounding system comprised of an acoustic profiler, Leica Viva RTK GPS, and laptop computer mounted on a shallow-draft, portable flat-bottom boat. The RTK GPS enabled high resolution elevations of the water surface. The rover positions were received from the Leica Smartnet system (www.lecia-geosystems.com) or base station and referenced to the same bench mark used in the elevation surveys. We mounted a variable frequency transducer...
thumbnail
This part of the Oregon OCS data release presents marine mammal observations from cruise 2014-607-FA in the Floating Wind Farm survey area. The survey was conducted using 12 hour day operations out of Charleston Harbor near Coos Bay, Oregon. The cruise plan consisted of 23 days on site split between sonar mapping and video ground truth surveying. Activities parsed out to nine days of sonar mapping, three days of video surveying, eight days of no operations due to weather, and three days mobilizing and demobilizing (table 1). Typically the Snavely would transit out to the survey area in an hour at a speed of 20 knots. Marine Mammal observations were made during the multibeam sonar mapping portion of the cruise only....
thumbnail
This polygon shapefile is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The polygons have attribute values for Coastal and Marine Ecological Classification Standard (CMECS) geoforms, substrate, and modifiers. CMECS is the U.S. government standard for marine habitat characterization and was developed by representatives from a consortium of federal agencies. The standard provides an ecologically relevant structure for biologic, geologic, chemical, and physical habitat attributes. This map illustrates the geoform and substrate components of the standard. The CMECS classes are documented at https://www.fgdc.gov/standards/projects/FGDC-standards-projects/cmecs-folder/CMECS_Version_06-2012_FINAL.pdf....
thumbnail
To assess the current topography of tidal marsh at the study sites we conducted survey-grade global positioning system (GPS) surveys between 2009 and 2014 using a Leica RX1200 Real Time Kinematic (RTK) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK GPS network coverage (Padilla, Port Susan, Nisqually, Siletz, Bull Island, and Bandon), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Skokomish, Grays Harbor, and Willapa), rover positions were received in real time from a Leica GS10 antenna base station via radio link. At sites where we used the...
thumbnail
This Data Release contains data from the U.S. Geological Survey (USGS) survey of the Oregon outer Continental shelf (OCS) Floating Wind Farm Site in 2014.The backscatter intensity data was collected along with bathymetry data by USGS during the period from August 20 to September 1, 2014, using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy Management.Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic...
thumbnail
A geodatabase containing shapefiles representing the geologic units present within the study area, as well as the locations where sampling ocurred, field photography conducted by John Armentrout ocurred, and satellite imagery providing overhead views of key points of John Armentrout's study.
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al. 2014), which is based on Callaway et al. (1996), to examine SLR projections across each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter productivity, compaction, and decay for a representative marsh area. Each cohort provides the mass of inorganic and organic matter accumulated at the surface in a single year as well as any subsequent belowground organic matter productivity (root growth)...
thumbnail
This data release contains data from the USGS survey of the Oregon OCS Floating Wind Farm Site in 2014.The bathymetry and shaded-relief rasters were generated from bathymetry data collected by USGS during the period from August 20 to September 1, 2014. using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy Management.
thumbnail
This data release contains data from the USGS survey of the Oregon OCS Floating Wind Farm Site in 2014.The shaded-relief raster was generated from bathymetry data collected by USGS during the period from August 20 to September 1, 2014. using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy Management.
thumbnail
This biotope raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The biotopes mapped in this area have been numbered to indicate combinations of seafloor hardness, ruggedness and depth associated with biotopes derived by analysis of video data as described in the accompanying Open-File Report (Cochrane and others, 2017). The map was created using video and multibeam echosounder bathymetry and backscatter data collected in 2014 and processed in 2015 (Cochrane and others, 2015). Cochrane, G.R., Dartnell, P., Hemery, L.G., and Hatcher, G., 2015, Data release for USGS field activity 2014-607-FA, Oregon OCS seafloor mapping; selected lease blocks relevant to renewable...
thumbnail
This part of the Oregon OCS Data Release presents geological observations from video collected on cruise 2014-607-FA in the Floating Wind Farm survey area. The survey was conducted using 12 hour day operations out of Charleston Harbor near Coos Bay, Oregon. The cruise plan consisted of 23 days on site split between sonar mapping and video ground truth surveying. Activities parsed out to nine days of sonar mapping, three days of video surveying, eight days of no operations due to weather, and three days mobilizing and demobilizing (table 1). Typically the Snavely would transit out to the survey area in an hour at a speed of 20 knots. Marine Mammal observations were made during the multibeam sonar mapping portion...
thumbnail
We used murrelet occupancy data collected by the Bureau of Land Management Coos Bay District and canopy metrics calculated from discrete return airborne LiDAR data to fit a logistic regression model predicting the probability of occupancy. Our final model for stand-level occupancy included distance to coast and 5 LiDAR-derived variables describing canopy structure. This dataset is a shapefile of forest stands in the Coos Bay district representing the model results.
thumbnail
To assess the current topography of tidal marsh at the study sites we conducted survey-grade global positioning system (GPS) surveys between 2009 and 2014 using a Leica RX1200 Real Time Kinematic (RTK) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK GPS network coverage (Padilla, Port Susan, Nisqually, Siletz, Bull Island, and Bandon), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Skokomish, Grays Harbor, and Willapa), rover positions were received in real time from a Leica GS10 antenna base station via radio link. At sites where we used the...
thumbnail
We conducted vegetation surveys concurrently with elevation surveys at every fourth elevation point (~25% of the elevation points) (Figure 5). We visually assessed percent cover of all plant species within a 0.25 m2 quadrat, and recorded the average and maximum height (measured to the nearest centimeter) of each species. Total plant cover in a plot could exceed 100% due to vegetation layering. Vascular plant nomenclature generally follows Baldwin et al. (2012) and Cook et al. (2013). We located 69 tidal wetland species in 2,154 vegetation plots across the nine estuaries in the study. Common species included Carex lyngbyei, Sarcocornia perennis, Distichlis spicata, Deschampsia cespitosa, Juncus balticus and Potentilla...
thumbnail
To parameterize accretion for SLR models, we measured historic rates of mineral and organic matter accumulation at each site by collecting deep soil cores with a Russian peat borer. At each site, we obtained cores in each of three vegetation zones: low, medium, and high marsh. Two replicate cores were sampled from each station for a total of 6 cores per site (except Coos Bay where 7 cores were taken). Coring locations were determined by RTK GPS elevation and tidal inundation data. Transects for core sampling were determined in ArcGIS, using a digitial elevation model and site-specific tidal datums to choose station locations below MHW (low), between MHW and MHHW (mid), and above MHHW (high). Sediment cores were...
thumbnail
This data release contains data from the USGS field activity 2014-607-FA, a survey of the Oregon Outer Continental Shelf (OCS) Floating Wind Farm Site in 2014.The bathymetry raster was generated from bathymetry data collected by U.S. Geological Survey (USGS) during the period from August 20 to September 1, 2014 using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy Management. Contours were generated using the ESRI Contour tool in spatial analysit. The contour interval is 10 meters.
thumbnail
This seafloor-character raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The substrate classes mapped in this area have been numbered to indicate combinations of seafloor hardness and ruggedness. The map was created from multibeam echosounder (MBES) bathymetry and backscattter data collected in 2014 and processed in 2015 (Cochrane and others, 2016) and a video supervised classification method described by Cochrane (2008). Cochrane, G.R., 2008, Video-supervised classification of sonar data for mapping seafloor habitat, in Reynolds, J.R., and Greene, H.G., eds., Marine habitat mapping technology for Alaska: Fairbanks, University of Alaska, Alaska Sea Grant...
thumbnail
This data release contains digital video files from the USGS field activity 2014-607-FA, a survey of the Oregon Outer Continental Shelf (OCS) Floating Wind Farm Site in 2014. Video data were collected over 3 days between September 6 and September 9, 2014 using a towed camera sled system. 11.6 hours of video were collected along 18 transects; the mean length of time per transect was 38 minutes. Video operations were conducted by deploying up drift of a target and drifting over it at speeds of 1 knot or slower. The video data were collected in order to ground truth geologic and habitat interpretations of sonar data collected during the same field activity. The video-survey locations were chosen after the sonar mapping...


    map background search result map search result map Oregon OCS bathymetry Oregon OCS mammal observations Oregon OCS geologic observations USGS Pacific Tidal Marsh Soil Core Surveys, Pacific Northwest US, 2013-14 Vegetation Surveys, All Field Sites, 2012-2014 Water Monitoring Data, All Study Sites, 2011-2015 Oregon OCS backscatter Oregon OCS 10 meter contours Oregon OCS hillshade Oregon OCS video Coastal and Marine Ecological Classifcation Standard (CMECS) geoforms of the Oregon outer continental shelf (OCS) proposed wind farm site Seafloor character of the Oregon outer continental shelf (OCS) proposed wind farm site Biotopes of the Oregon outer continental shelf (OCS) proposed wind farm site Elevation Points for Eight Study Areas in Coastal Oregon and Washington, 2012 Bathymetry Digital Elevation Models for Eight Study Areas in Coastal Oregon and Washington, 2012 Digital Elevation Models for eight study areas in coastal Oregon and Washington, 2012 WARMER model projections of sea-level rise for eight tidal marsh study areas on coastal Oregon and Washington, 2010-2110 Forest stands and LiDAR derived model estimates of marbled murrelet (Brachyramphus marmoratus) occupancy in the Coos Bay BLM District, Southwestern Oregon Digital Database of Microfossil samples from Southwestern Coastal Oregon Oregon OCS 10 meter contours Coastal and Marine Ecological Classifcation Standard (CMECS) geoforms of the Oregon outer continental shelf (OCS) proposed wind farm site Oregon OCS bathymetry Oregon OCS hillshade Seafloor character of the Oregon outer continental shelf (OCS) proposed wind farm site Biotopes of the Oregon outer continental shelf (OCS) proposed wind farm site Oregon OCS video Oregon OCS mammal observations Oregon OCS geologic observations Oregon OCS backscatter WARMER model projections of sea-level rise for eight tidal marsh study areas on coastal Oregon and Washington, 2010-2110 Elevation Points for Eight Study Areas in Coastal Oregon and Washington, 2012 Digital Elevation Models for eight study areas in coastal Oregon and Washington, 2012 USGS Pacific Tidal Marsh Soil Core Surveys, Pacific Northwest US, 2013-14 Vegetation Surveys, All Field Sites, 2012-2014 Water Monitoring Data, All Study Sites, 2011-2015 Bathymetry Digital Elevation Models for Eight Study Areas in Coastal Oregon and Washington, 2012 Digital Database of Microfossil samples from Southwestern Coastal Oregon