Skip to main content
Advanced Search

Filters: Tags: Estuary (X) > Extensions: ArcGIS Service Definition (X) > partyWithName: Kevin J Buffington (X)

6 results (64ms)   

View Results as: JSON ATOM CSV
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for Suisun marsh using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (6912 points, collected across public and private land in 2018), Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image (June 2018), a 1 m lidar DEM from September 2018, and a 1 m canopy surface model were used to generate models of predicted bias across the...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for tidal marsh areas around San Francisco Bay using the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). Survey-grade GPS survey data (6614 points), NAIP-derived Normalized Difference Vegetation Index, and original 1 m lidar DEM from 2010 were used to generate a model of predicted bias across tidal marsh areas. The predicted bias was then subtracted from the original lidar DEM and merged with the NOAA...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for wetlands throughout Collier county using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (15,223 points), NAIP-derived Normalized Difference Vegetation Index (2010), a 10 m lidar DEM from 2007, and a 10 m canopy surface model were used to generate a model of predicted bias across marsh, mangrove, and cypress habitats. The predicted bias was then subtracted from...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for the area surrounding Blackwater National Wildlife Refuge in Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites in Chesapeake Bay (Eastern Neck, Martin, Bishops Head, and Blackwater) in 2010 and 2017. Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for the area surrounding the Eastern Neck National Wildlife Refuge in Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites in Chesapeake Bay (Eastern Neck, Martin, Bishops Head, and Blackwater) in 2010 and 2017. Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for area surrounding the Martin National Wildlife Refuge in Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites in Chesapeake Bay (Eastern Neck, Martin, Bishops Head, and Blackwater) in 2010 and 2017. Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image (2013)...


    map background search result map search result map LEAN-corrected San Francisco Bay Digital Elevation Model, 2018 LEAN-Corrected DEM for Suisun Marsh Blackwater LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 Eastern Neck LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 Martin LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 LEAN-Corrected Collier County DEM for wetlands Eastern Neck LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 LEAN-Corrected DEM for Suisun Marsh Blackwater LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 LEAN-corrected San Francisco Bay Digital Elevation Model, 2018 LEAN-Corrected Collier County DEM for wetlands