Skip to main content
Advanced Search

Filters: Tags: GHSC (X) > Types: OGC WMS Service (X)

44 results (56ms)   

View Results as: JSON ATOM CSV
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Here we present an inventory of remotely and field-observed landslides triggered by 2019-2020 Puerto Rico earthquake sequence. The inventory was mapped using pre- and post-event satellite imagery (PR_landslide_inventory_imagery.csv), an extensive collection of field observations (https://doi.org/10.5066/P96QNFMB) and using pre-earthquake lidar as guidance for mapping polygons with more precise locations and geometries (2015 - 2017 USGS Lidar DEM: Puerto Rico dataset). The inventory consists of a shapefile of 309 polygons (PR_landslide_inventory_pts.shp) outlining the source area and deposits together. It also includes a point inventory (PR_landslide_inventory_pts.shp) marking 170 individual displaced boulders that...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Landslides are damaging and deadly, and they occur in every U.S. state. However, our current ability to understand landslide hazards at the national scale is limited, in part because spatial data on landslide occurrence across the U.S. varies greatly in quality, accessibility, and extent. Landslide inventories are typically collected and maintained by different agencies and institutions, usually within specific jurisdictional boundaries, and often with varied objectives and information attributes or even in disparate formats. The purpose of this data release is to provide an openly accessible, centralized map of existing information on landslide occurrence across the entire U.S. The data release includes digital...
thumbnail
This data release includes time-series data from a monitoring site located in a small drainage basin in the Arroyo Seco watershed in Los Angeles County, CA, USA (N3788964 E389956, UTM Zone 11, NAD83). The site was established after the 2009 Station Fire and recorded a series debris flows in the first winter after the fire. The data include three types of time-series: (1) 1-minute time series of rainfall, soil water content, channel bed pore pressure and temperature, and flow stage recorded by radar and laser distance meters (ArroyoSecoContinuous.csv); (2) 10-Hz time series of flow stage recorded by the laser distance meter during rain storms (ArroyoSecoStormLaser.csv), and (3) 2-second time series of rainfall and...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
The data for this release is an ASCII file containing grid points of Cascadia P- and S-wave velocity models. The model volume was developed to include the Cascadia subduction zone for purposes of ground motion simulation. The description of the model and background of its development is provided in the associated Open-File Report. The grid points are given in Universal Transverse Mercator (UTM) Zone 10 North coordinates for East and North locations, and the grid point depths are given in meters below mean sea level. Grid point spacing is 500 meters in each ordinal direction. The model region extends approximately from 40.2°N to 50°N latitude, and approximately from 122°W to 129°W longitude. The maximum depth of...
This data release contains supplemental data for the following paper: Nelson, A.R., DuRoss, C.B., Mahan, S.A., Gray, H.J., Engelhart, S.E., Witter, R.C., Hawkes, A.D., Horton, B.P., Kelsey, H.M., and Padgett, J.S., 2021, A maximum rupture model for the central and southern Cascadia subduction zone—assessing ages for coastal evidence of megathrust earthquakes and tsunamis: Quaternary Science Reviews 261, https://doi.org/10.1016/j.quascirev.2021.106922. The data include a compilation of new and previously published radiocarbon ages from the original cores from Bradley Lake of Kelsey et al. (2005; odt format), and tables of new and previously published radiocarbon data for 7 of the 13 tidal wetland sites along the...
thumbnail
Lidar data were collected on 17 May 2017 at the USGS debris-flow flume (44.215, -122.254) to monitor the movement of a constructed landslide experiment. A static prism of sediment was emplaced behind a retaining wall at the top of the flume. Water was added via sprinklers to the surface and also via pipes to the subsurface, in order to saturate the sediment mass. The sediment mass eventually failed as a debris flow and moved down the flume. Lidar data were collected from a Riegl VZ-400 terrestrial laser scanner to capture the mass failure. The laser scanner was modified, so that rather than scanning in a 360 degree motion, as it is designed, it only scanned a narrow swath (approximately 1 mm) along the full...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.


map background search result map search result map Radiocarbon ages, age-model code, and other supplemental data for Nelson et al. (2021), A maximum rupture model for the central and southern Cascadia subduction zone—assessing ages for coastal evidence of megathrust earthquakes and tsunamis Post-wildfire debris-flow monitoring data, Arroyo Seco, 2009 Station Fire, Los Angeles County, California, November 2009 to March 2010. Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Data for P- and S-wave Seismic Velocity Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion simulations- Update for Open-File Report 2007-1348 Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Caribbean Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Hellenic Arc Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sumatra-Java Region Landslide Inventories across the United States Lidar data for natural release experiment at the USGS Debris Flow Flume 17 May 2017 Inventory of landslides triggered by the 2020 Puerto Rico earthquake sequence Lidar data for natural release experiment at the USGS Debris Flow Flume 17 May 2017 Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Inventory of landslides triggered by the 2020 Puerto Rico earthquake sequence Radiocarbon ages, age-model code, and other supplemental data for Nelson et al. (2021), A maximum rupture model for the central and southern Cascadia subduction zone—assessing ages for coastal evidence of megathrust earthquakes and tsunamis Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Data for P- and S-wave Seismic Velocity Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion simulations- Update for Open-File Report 2007-1348 Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Hellenic Arc Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Caribbean Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sumatra-Java Region Landslide Inventories across the United States