Skip to main content
Advanced Search

Filters: Tags: Hydrology (X) > Types: Map Service (X) > Types: OGC WMS Service (X)

614 results (887ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) computed rasters of pre-solved values for the watersheds draining to the pixel delineation point representing the watershed's mean maximum and minimum January temperature from PRISM 1981-2010 4km data (resampled to 30m resolution). These values, which cover the conterminous United States, will be served in the National StreamStats Fire-Hydrology application to describe delineated watersheds (https://streamstats.usgs.gov/). The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate drainage areas, to retrieve basin...
thumbnail
Monroe County, in southeastern West Virginia, hosts world-class karst within carbonate units of Mississippian and Ordovician age. There are at least 412 known caves in the county. Location data for these caves were collected from the West Virginia Speleological Survey (WVASS) Bulletin 22 (Dasher, 2019). Point features were created in ArcGIS Pro for each cave location and were used to make a point density raster. This raster displays the number of cave points per square kilometer.
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, that were based on methods described by Sando and McCarthy (2018). Citation: Sando, S.K., and McCarthy, P.M.,...
thumbnail
The U.S. Geological Survey (USGS) computed rasters of pre-solved values for the watersheds draining to the pixel delineation point representing the watershed's percent forested land cover from the National Land Cover Dataset (NLCD) 2016 data (land cover values 41-43). These values, which cover the conterminous United States at a scale of 30m pixel size, will be served in the National StreamStats Fire-Hydrology application to describe delineated watersheds ( https://streamstats.usgs.gov/ ). The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate...
thumbnail
As part of a collaborative study with the City of Raleigh, North Carolina, the U.S. Geological Survey is assessing streambank erosion potential in selected stream reaches throughout the Greater Raleigh metropolitan area. Rapid field measurement techniques were used to assess streambank stability at 124 stream segments between January and March 2022. Field data were collected using the Bank Erosion Hazard Index (BEHI) and Near Bank Stress (NBS) assessment methods (Rosgen, 2001; Rosgen and others, 2008) as well as the Rapid Geomorphic Assessment (RGA) method (Simon and others, 2007). This Data Release contains a dataset with all stream site information, field measurements, and streambank stability assessment results;...
This data release documents statistics for simulating structural stormwater runoff best management practices (BMPs) with the Stochastic Empirical Loading and Dilution Model (SELDM)(Granato, 2013). The U.S. Geological Survey (USGS) developed SELDM and the statistics documented in this report in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater flows, concentrations, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. In SELDM, three treatment variables, hydrograph extension, runoff volume reduction, and water-quality treatment are modeled by using the trapezoidal distribution and the rank...
This data release contains input data used in model development and TIF raster files used to predict the probability of low dissolved oxygen (DO) and high dissolved iron (Fe) in groundwater within the glacial aquifer system in the northern continental United States. Input data include measured DO and Fe concentrations at groundwater wells, and associated predictor variable data. The probability of low DO and high Fe was predicted using boosted regression tree methods using the gbm package in R (v. 4.0.0) in RStudio (v. 1.2.5042). The response variables for individual models were the occurrence of: (1) DO ≤0.5 mg/L, (2) DO ≤2 mg/L, and (3) Fe >100 µg/L. Water-quality data were compiled from three sources, as described...
thumbnail
The U.S. Geological Survey (USGS) in cooperation with the city of Grandview, Missouri, assessed flooding of the Little Blue River at Grandview resulting from varying precipitation magnitudes and durations, and expected land cover changes. The precipitation scenarios were used to develop a library of flood-inundation maps that included a 3.5-mile reach of the Little Blue River and tributaries within and adjacent to the city. A hydrologic model of the upper Little Blue River Basin, and hydraulic model of a selected study reach of the Little Blue River and tributaries were constructed to assess streamflow magnitudes associated with simulated precipitation amounts and the resulting flood-inundation conditions. The...
thumbnail
These data depict the National Hydrography Dataset Plus Version 2.1 (NHDPlusV2.1) flowline representation of the National Wild and Scenic Rivers System throughout the conterminous United States as of 2018. U.S. Forest Service geospatial data on National Wild and Scenic River segments (USFS WSR Segment) from 3/1/2016 were joined to the NHDPlusV2.1 to create the Wild and Scenic Rivers 2018 Linked to the NHDPlusV2.1 (wsr_nhdpv2.1) data. To ensure these data correctly represented the NHDPlusV2.1 flowline delineation of the National Wild and Scenic Rivers System, each wsr_nhdpv2.1 river segment was examined against the USFS WSR Segment data to check for duplication and/or omission of Wild and Scenic River segments. Spatial...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alabama, Arizona, Arkansas, California, Colorado, All tags...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
Water analyses are reported for 66 samples collected from numerous thermal and non-thermal (rivers and streams) features in the southwestern areas of Yellowstone National Park (YNP) during 2009, 2017, and 2018. Water samples were collected from sources near Boundary Creek, Bechler River, Falls River, Mountain Ash Creek, Upper Snake River, Spirea Creek, and Lewis Lake. These water samples were collected and analyzed as part of research investigations on the chemistry of Yellowstone’s hydrothermal system and on the distribution of dissolved arsenic and mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen....
thumbnail
As the urban landscape and municipal infrastructure in U.S. cities changes in response to socio-economic conditions, so does the manner in which water cycles through these cities. The modulation of hydrologic processes (e.g., runoff, infiltration, evapotranspiration) by land use and land cover has implications for resilience, sustainability, and optimizing municipal service functions. The U.S. Geological Survey and U.S. Environmental Protection Agency, Office of Research and Development, collaborated to address the question of how Legacy (standard) and recent (Urban Greening Program or "Green") vacant lots – each the product of a certain approach to the widespread practice of demolition – differ in terms of how...
thumbnail
Impervious runoff-discharge to receiving streams is widely recognized as one of the leading factors contributing to ecological degradation in such streams. Although there are many factors that contribute to ecological degradation with increasing development adverse effects caused by runoff quality is widely recognized as a contributing factor. The objective of this study was to simulate the flows concentrations and loads of impervious-area runoff and stormflows from an undeveloped area over a range of impervious percentages and drainage areas to examine potential relations between these variables and the quantity and quality of downstream flows. Stormwater runoff in a hypothetical stream basin that represents hydrologic...
thumbnail
This data release includes field measurements of flow depth and optical image sequences acquired from the Salcha River in Alaska on July 25, 2019. These data were used to develop and test a spectrally based remote sensing technique for estimating water depth from passive optical image data. The purpose of this study was to assess the feasibility of inferring water depths from optical image sequences acquired from a helicopter hovering above the river by averaging the images over time and then establishing a correlation between a spectral band ratio and field measurements of depth, and to develop a modular workflow for performing this type of analysis. Remote sensing of river bathymetry (depth) could provide a...
The U.S. Geological Survey's (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Southwestern Region of the Unites States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2016-5105 Flood-inundation maps for the Peckman River in the Townships of Verona, Cedar Grove, and Little Falls, and the Borough of Woodland Park, New Jersey, 2014.Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. Flood profiles were simulated...
thumbnail
Supporting datasets for the associated journal publication "Towards reproducible environmental modeling for decision support: a worked example". Includes source codes for the version of PEST++ and MODFLOW-2005 used, the pyEMU and FloPy python modules and the driver script "eaa.py". Also included are the existing MODFLOW-2005 models supplied the Edwards Aquifer Authority
thumbnail
This data release includes data-processing scripts, data products, and associated metadata for a study to model the hydrology of several hundred vernal pools (i.e., seasonal pools or ephemeral wetlands) across the northeastern United States. More information on this study is available from the project website. This data release consists of several components: (1) an input dataset and associated metadata document ("pool_inundation_observations_and_climate_and_landscape_data"); (2) an annotated R script which processes the input dataset, performs inundation modeling, and generates model predictions ("annotated_R_script_for_pool_inundation_modeling.R"); and (3) a model prediction dataset and associated metadata document...


map background search result map search result map Flood inundation depth for a gage height of 4.0 ft at gage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey (pecknj_03) Water chemistry data for selected hot springs and rivers in Southwest Yellowstone National Park, Wyoming Wild and Scenic Rivers 2018 Linked to the NHDPlusV2.1 Model archive for analysis of the effects of impervious cover on receiving-water quality with the Stochastic Empirical Loading Dilution Model (SELDM) Inundation observations and inundation model predictions for vernal pools of the northeastern United States Towards reproducible environmental modeling for decision support: a worked example Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Groundwater data, predictor variables, and rasters used for predicting redox conditions in the glacial aquifer, northern continental United States Statistics for simulating structural stormwater runoff best management practices (BMPs) with the Stochastic Empirical Loading and Dilution Model (SELDM) Field measurements of flow depth and optical image sequences acquired from the Salcha River, Alaska, on July 25, 2019 Hydrologic and soil data associated with selected vacant deconstruction lots in St. Louis, Missouri, 2018-2020 SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Southwestern United States, 2012 Base Year (ver. 2.0, October 2020) Geospatial data and hydraulic-model archive for evaluation of flood-inundation maps developed for a reach of the Little Blue River at Grandview, Missouri Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Pre-computed mean January maximum and minimum temperature rasters from PRISM 1981-2010 from the conterminous United States, for the StreamStats Fire-Hydrology application 2021 Precomputed Percent Forested-Area Rasters Derived from NLCD 2016 in Support of the StreamStats Fire-Hydrology Application, Conterminous United States Density raster of caves in Monroe County, West Virginia Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Datasets for Rapid Assessment of Streambank Erosion Potential for Selected Streams throughout the Greater Raleigh Area, North Carolina, 2022 Geospatial data and hydraulic-model archive for evaluation of flood-inundation maps developed for a reach of the Little Blue River at Grandview, Missouri Field measurements of flow depth and optical image sequences acquired from the Salcha River, Alaska, on July 25, 2019 Hydrologic and soil data associated with selected vacant deconstruction lots in St. Louis, Missouri, 2018-2020 Flood inundation depth for a gage height of 4.0 ft at gage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey (pecknj_03) Datasets for Rapid Assessment of Streambank Erosion Potential for Selected Streams throughout the Greater Raleigh Area, North Carolina, 2022 Density raster of caves in Monroe County, West Virginia Towards reproducible environmental modeling for decision support: a worked example Model archive for analysis of the effects of impervious cover on receiving-water quality with the Stochastic Empirical Loading Dilution Model (SELDM) Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Inundation observations and inundation model predictions for vernal pools of the northeastern United States SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Southwestern United States, 2012 Base Year (ver. 2.0, October 2020) Groundwater data, predictor variables, and rasters used for predicting redox conditions in the glacial aquifer, northern continental United States Wild and Scenic Rivers 2018 Linked to the NHDPlusV2.1 Pre-computed mean January maximum and minimum temperature rasters from PRISM 1981-2010 from the conterminous United States, for the StreamStats Fire-Hydrology application 2021 Precomputed Percent Forested-Area Rasters Derived from NLCD 2016 in Support of the StreamStats Fire-Hydrology Application, Conterminous United States Statistics for simulating structural stormwater runoff best management practices (BMPs) with the Stochastic Empirical Loading and Dilution Model (SELDM)