Skip to main content
Advanced Search

Filters: Tags: Interested public (X) > Types: OGC WMS Layer (X) > Types: OGC WMS Service (X)

342 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The Gyrfalcon, the largest falcon, is an iconic bird of the circumpolar arctic and subarctic. Thisspecies nests primarily on precipitous cliff faces and typically utilizes nests built by other species(particularly Common Raven, Golden Eagle, and Rough-legged Hawk) (Booms et al. 2008).Gyrfalcon main prey includes bird species ranging in size from passerines to geese whileptarmigan are the preferred prey. Although not well documented, in winter this species movessouth throughout Canada and sometimes into the northern lower 48. Current population on theNorth Slope (tundrius subspecies) is estimated at 250 breeding pairs (USFWS 2000).
thumbnail
The Red-necked Phalarope commonly breeds in both the Brooks Range foothills and ArcticCoastal Plain of Alaska. In Alaska, this species typically nests in wet tundra near water’s edge.It differs from the Red Phalarope in that it breeds further inland and at higher elevations (Rubegaet al. 2000). Like other phalaropes, this species depends on aquatic food sources for much of itsdiet (Rubega et al. 2000). Red-necked Phalaropes spend winter at sea in tropical waters in largenumbers off the west coast of South America (Rubega et al. 2000). Current North Americanpopulation estimate is 2.5 million with a declining trend (Morrison et al. 2006).
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
This pilot project has initiated a long-term integrated modeling project that aims todevelop a dynamically linked model framework focused on climate driven changes tovegetation, disturbance, hydrology, and permafrost, and their interactions and feedbacks.This pilot phase has developed a conceptual framework for linking current state-of-thesciencemodels of ecosystem processes in Alaska – ALFRESCO, TEM, GIPL-1 – and theprimary processes of vegetation, disturbance, hydrology, and permafrost that theysimulate. A framework that dynamically links these models has been defined and primaryinput datasets required by the models have been developed.
thumbnail
Baseline (1961-1990) average winter total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps, ‘winter’ is defined as December - February. The Alaska portion of the Arctic LCC’s terrestrial boundary is depicted by the black line. Baseline results for 1961-1990 are derived from Climate Research Unit (CRU) TS 3.1.01 data and downscaled to 2km grids; results for the other time periods (2010-2039, 2040-2069, 2070-2099) are based on the SNAP 5-GCM composite using the AR5-RCP 8.5, downscaled to 2km grids.
thumbnail
Average historical annual total precipitation (inches) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.
thumbnail
Efforts to model and predict long-term variations in climate-based on scientific understanding of climatological processes have grown rapidly in their sophistication to the point that models can be used to develop reasonable expectations of regional climate change. This is important because our ability to assess the potential consequences of a changing climate for particular ecosystems or regions depends on having realistic expectations about the kinds and severity of change to which a region may be exposed.The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a collaborative climate modeling research effort coordinated by the World Climate Research Programme (WCRP). This is the most recent phase...
thumbnail
Average historical annual total precipitation (mm) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.
thumbnail
The American Tree Sparrow is a common breeding bird of boreal and tundra dominated habitatsin northern Canada and Alaska. This species breeds in open scrubby areas; willow, birch, andalder thickets, stunted spruce, open tundra with scattered shrubs, often near lakes or bogs(Naugler 1993). In summer American Tree Sparrows consume a wide variety of animal prey(primarily both larval and adult insects). Alaskan birds are short-distance migrants and winter intemperate North America (Naugler 1993). This species’ population is very large (>10 million)although the overall population has undergone a small (statistically insignificant) decrease overthe last 40 years in North America (Butcher and Niven 2007).
thumbnail
The Long-billed Dowitcher is a medium-sized shorebird that commonly breeds on the ArcticCoastal Plain of Alaska. This species nests in higher densities in the western portion of thecoastal plain compared to the east (Johnson et al. 2007). They prefer wet grassy meadows fornesting often showing an affinity for sedge-willow, wet meadow or sedge marsh along drainagesor near ponds (Takekawa and Warnock 2000). Long-billed Dowitchers generally migrate west ofthe Mississippi River and winter primarily along the Pacific and Gulf Coasts of North Americainto Mexico (Takekawa and Warnock 2000). Current population estimate of the North Americanpopulation is 400,000 (Morrison et al. 2006).
thumbnail
The White-rumped Sandpiper is a small shorebird that is a relatively rare breeder in ArcticAlaska. They nest in coastal wetlands between Barrow and Cape Halkett on the Arctic CoastalPlain of Alaska
thumbnail
The Western Sandpiper is one of the most abundant sandpipers in the western hemisphere. InAlaska, the core of its breeding population is in the Yukon-Kuskokwim River Delta. It alsobreeds less commonly in the western portion of the North Slope (Johnson et al. 2007). Thisspecies nests in well-drained moist to upland tundra habitats dominated by dwarf shrubs andtussock grasses (Wilson 1994).
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CCCMA_CGCM31_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from CCCMA (also CGCM3.1), a third generation coupled global climate model created by the Canadian Centre for Climate Modeling and Analysis. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CRU_Historical_annual_1930-1939.tif represents the decade spanning 1930-1939. The data were generated by using the Hamon equation and output from a statistically downscaled version of the Hadley Centre’s CRU TS3.0 observational dataset. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users are reminded that the PET estimates...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
Average historical annual total precipitation (mm) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.
thumbnail
The Imiq Hydroclimate Database houses hydrologic, climatologic, and soils data collected in Alaska and Western Canada from the early 1900s to the present. This database unifies and preserves numerous data collections that have, until now, been stored in field notebooks, on desktop computers, as well as in disparate databases. Synthesizing and analyzing the large-scale hydroclimate characteristics of this important climatic region have been made easier with this searchable database. The data, originally collected in a Microsoft SQL Server 2008 relational database, has been migrated to an open source PostgreSQL and PostGIS environment. The Imiq Data Portal provides public access to portions of the Imiq Hydroclimate...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ABLATION, ABLATION, ACTIVE LAYER, ACTIVE LAYER, ALBEDO, All tags...


map background search result map search result map Imiq - Hydroclimate Database and Data Portal Annual Precipitation Maps - RCP 8.5, Inches Annual Precipitation Maps - RCP 6.0, Millimeters Stand Age Projections 2080-2089 Active Layer Thickness 2040 2049 Active Layer Thickness 1990-1999 Potential Evapotranspiration 1920-1929: CRU Historical Dataset Potential Evapotranspiration 2020-2029: ECHAM5 - A1B Scenario Winter Precipitation Maps - RCP 8.5, Inches Red-necked Phalarope White-rumped Sandpiper Alaska Integrated Ecosystem Model Pilot Year Final Report Western Sandpiper Potential Evapotranspiration 2040-2049: ECHAM5 - A1B Scenario Gyrfalcon Long-billed Dowitcher American Tree Sparrow Annual Precipitation Maps - RCP 8.5, Millimeters Potential Evapotranspiration 2000-2009: CCCMA - A1B Scenario CMIP5 Future Average Annual Temperature 2031-2060 Red-necked Phalarope White-rumped Sandpiper Western Sandpiper Gyrfalcon Long-billed Dowitcher American Tree Sparrow CMIP5 Future Average Annual Temperature 2031-2060 Imiq - Hydroclimate Database and Data Portal Stand Age Projections 2080-2089 Active Layer Thickness 2040 2049 Active Layer Thickness 1990-1999 Potential Evapotranspiration 1920-1929: CRU Historical Dataset Potential Evapotranspiration 2020-2029: ECHAM5 - A1B Scenario Alaska Integrated Ecosystem Model Pilot Year Final Report Potential Evapotranspiration 2040-2049: ECHAM5 - A1B Scenario Potential Evapotranspiration 2000-2009: CCCMA - A1B Scenario Annual Precipitation Maps - RCP 8.5, Inches Annual Precipitation Maps - RCP 6.0, Millimeters Winter Precipitation Maps - RCP 8.5, Inches Annual Precipitation Maps - RCP 8.5, Millimeters