Skip to main content
Advanced Search

Filters: Tags: Journal of Agricultural, Biological, and Environmental Statistics (X)

28 results (7ms)   

View Results as: JSON ATOM CSV
thumbnail
For valid statistical inference, it is important to select an appropriate statistical model. In the analysis of capture-recapture data under the closed-population models of Otis et al. (1978), information theoretic and hypothesis testing approaches to model selection are not practical, because some of the models have likelihoods with nonidenti- fiable parameters. A further problem is that, for some of the Otis et al. models, multiple estimators exist but there is no objective basis for deciding which estimator to use for a particular dataset. In CAPTURE, a computer program for estimating parameters un- der the closed models of Otis et al., a linear discriminant classifier is used to select an appropriate model....
thumbnail
We tested the potential of a GIS mapping technique, using a resource selection model developed for black-tailed jackrabbits (Lepus californicus) and based on the Mahalanobis distance statistic, to track changes in shrubsteppe habitats in southwestern Idaho. If successful, the technique could be used to predict animal use areas, or those undergoing change, in different regions from the same selection function and variables without additional sampling. We determined the multivariate mean vector of 7 GIS variables that described habitats used by jackrabbits. We then ranked the similarity of all cells in the GIS coverage from their Mahalanobis distance to the mean habitat vector. The resulting map accurately depicted...
thumbnail
Analysis of Capture–Recapture Data by McCrea and Morgan is an excellent, easy to read monograph about capture–recapture models. In this book, the authors provide a concise overview of traditional closed population capture–recapture models (Models M0, Mb, Mh, etc.), individual covariate models, and open population models such as the Cormack–Jolly–Seber, Jolly–Seber models, multi-state models, and more recent developments such as occupancy models, state-space models, and integrated population models. The authors write “In this book we aim to cover the many modern developments in the area of capture–recapture and related models, and to set them in historical context of relevant research over the past 100 years.” The...
thumbnail
Species range shifts and the spread of diseases are both likely to be driven by extreme movements, but are difficult to statistically model due to their rarity. We propose a statistical approach for characterizing movement kernels that incorporate landscape covariates as well as the potential for heavy-tailed distributions. We used a spliced distribution for distance travelled paired with a resource selection function to model movements biased toward preferred habitats. As an example, we used data from 704 annual elk movements around the Greater Yellowstone Ecosystem from 2001 to 2015. Yearly elk movements were both heavy-tailed and biased away from high elevations during the winter months. We then used a simulation...
thumbnail
Mark-recapture estimators assume no loss of marks to provide unbiased estimates of population parameters. We describe a hidden Markov model (HMM) framework that integrates a mark loss model with a Cormack–Jolly–Seber model for survival estimation. Mark loss can be estimated with single-marked animals as long as a sub-sample of animals has a permanent mark. Double-marking provides an estimate of mark loss assuming independence but dependence can be modeled with a permanently marked sub-sample. We use a log-linear approach to include covariates for mark loss and dependence which is more flexible than existing published methods for integrated models. The HMM approach is demonstrated with a dataset of black bears (Ursus...
thumbnail
Ecological abundance data are often recorded on an ordinal scale in which the lowest category represents species absence. One common example is when plant species cover is visually assessedwithin bounded quadrats and then assigned to pre-defined cover class categories.We present an ordinal beta hurdle model that directly models ordinal category probabilitieswith a biologically realistic beta-distributed latent variable.Ahurdle-at-zero model allows ecologists to explore distribution (absence) and abundance processes in an integrated framework. This provides an alternative to cumulative link models when data are inconsistent with the assumption that the odds ofmoving into a higher category are the same for all categories...
thumbnail
Design and analysis of wildlife habitat selection studies typically do not assess the effect of spatial pattern on the habitat selection process. Effects of landscape scale pattern on habitat selection cannot be accomplished without replicate study areas, because pattern is a single, albeit multifaceted, attribute of an area. For a single area, however, the influence of pattern-related characteristics, such as shape and edge shared with adjacent patches, can be estimated by using GLIM (McCullough and Neider 1983) procedures to model patch-specific frequency counts of animal use as a function of these parameters. This approach is evaluated and illustrated with simulated breeding-bird counts in a South Carolina study...
thumbnail
We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models...
thumbnail
Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework...
thumbnail
Few species are likely to be so evident that they will always be detected at a site when present. Recently a model has been developed that enables estimation of the proportion of area occupied, when the target species is not detected with certainty. Here we apply this modeling approach to data collected on terrestrial salamanders in the Plethodon glutinosus complex in the Great Smoky Mountains National Park, USA, and wish to address the question 'how accurately does the fitted model represent the data?' The goodness-of-fit of the model needs to be assessed in order to make accurate inferences. This article presents a method where a simple Pearson chi-square statistic is calculated and a parametric bootstrap procedure...
thumbnail
We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models...
thumbnail
Designing an efficient sampling scheme for a rare and clustered population is a challenging area of research. Adaptive cluster sampling, which has been shown to be viable for such a population, is based on sampling a neighborhood of units around a unit that meets a specified condition. However, the edge units produced by sampling neighborhoods have proven to limit the efficiency and applicability of adaptive cluster sampling. We propose a sampling design that is adaptive in the sense that the final sample depends on observed values, but it avoids the use of neighborhoods and the sampling of edge units. Unbiased estimators of population total and its variance are derived using Murthy's estimator. The modified two-stage...
thumbnail
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC)...
thumbnail
Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations...
thumbnail
Data collected under a double-count protocol during line transect surveys were analyzed using new maximum likelihood methods combined with Akaike's information criterion to provide estimates of the abundance of polar bear (Ursus maritimus Phipps) in a pilot study off the coast of Alaska. Visibility biases were corrected by modeling the detection probabilities using logistic regression functions. Independent variables that influenced the detection probabilities included perpendicular distance of bear groups from the flight line and the number of individuals in the groups. A series of models were considered which vary from (1) the simplest, where the probability of detection was the same for both observers and was...
thumbnail
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction....
thumbnail
Mark-resight designs for estimation of population abundance are common and attractive to researchers. However, inference from such designs is very limited when faced with sparse data, either from a low number of marked animals, a low probability of detection, or both. In the Greater Yellowstone Ecosystem, yearly mark-resight data are collected for female grizzly bears with cubs-of-the-year (FCOY), and inference suffers from both limitations. To overcome difficulties due to sparseness, we assume homogeneity in sighting probabilities over 16 years of bi-annual aerial surveys. We model counts of marked and unmarked animals as multinomial random variables, using the capture frequencies of marked animals for inference...
thumbnail
This article introduces the beta-binomial estimator (BBE), a closed-population abundance mark-resight model combining the favorable qualities of maximum likelihood theory and the allowance of individual heterogeneity in sighting probability (p). The model may be parameterized for a robust sampling design consisting of multiple primary sampling occasions where closure need not be met between primary occasions. We applied the model to brown bear data from three study areas in Alaska and compared its performance to the joint hypergeometric estimator (JHE) and Bowden's estimator (BOWE). BBE estimates suggest heterogeneity levels were non-negligible and discourage the use of JHE for these data. Compared to JHE and BOWE,...
thumbnail
Forest inventories, like those conducted by the Forest Service's Forest Inventory and Analysis Program (FIA) in the Rocky Mountain Region, are under increased pressure to produce better information at reduced costs. Here we describe our efforts in Utah to merge satellite-based information with forest inventory data for the purposes of reducing the costs of estimates of forest population totals and providing spatial depiction of forest resources. We illustrate how generalized linear models can be used to construct approximately unbiased and efficient estimates of population totals while providing a mechanism for prediction in space for mapping of forest structure. We model forest type and timber volume of five tree...


map background search result map search result map Ecological prediction with nonlinear multivariate time-frequency functional data models Ecological prediction with nonlinear multivariate time-frequency functional data models