Skip to main content
Advanced Search

Filters: Tags: Mojave (X) > Categories: Data (X)

69 results (82ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
As part of a research study in cooperation with the U.S. Environmental Protection Agency (EPA) and the U.S. Army at Fort Irwin National Training Center, the U.S. Geological Survey (USGS) evaluated unsaturated zone soil property data of cores from a borehole for a newly drilled monitoring well near a dry well and Four-plex baseball field. Cores were continuous from land surface down to 240 feet below land surface and were drilled by consultants to EPA using sonic rotary–a fluidless drilling technique. Data on this page consist of: 1) field drilling notes from USGS and consultants to EPA (GeoSystems Analysis, Inc., Tucson, Arizona); 2) field descriptions of core lithology–including grain size, sorting, color, mineralogy,...
thumbnail
As part of a larger groundwater research study conducted at the U.S. Army Fort Irwin National Training Center (NTC), located approximately 35 miles north-northeast of Barstow, California, the U.S. Environmental Protection Agency (EPA), the U.S. Army, and the U.S. Geological Survey (USGS) have cooperated to evaluate unsaturated zone soil property data of cores from the borehole for a newly drilled monitoring well (ESW2B). Specific horizons of interest were identified and selected for detailed grain-size distribution analysis using the Fritsch Analysette A28 Image Sizer (particle analyzer) located at the USGS California Water Science Center (CAWSC) in San Diego, CA. The particle analyzer identified circularity and...
thumbnail
These datasets were developed to represent the geographic distribution of Plantago ovata in the Mojave Desert. This data release consists of two raster spatial layers (GeoTIFF) reflecting predicted habitat for the species within the Mojave Desert and the standard error in predictions. The habitat layer (raster dataset) is a continuous probability distribution of suitable habitat where values range from 0 (very low probability of species occurrence) to 1 (very high probability of species occurrence). An additional raster dataset provides the standard error in habitat predictions calculated among alternative habitat models: users should evaluate both the habitat and standard error datasets and exercise prudence when...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
FY2014This project builds upon the springs and seeps inventory funded by the Desert LCC.This project will: Fill a significant gap in aquatic habitat information for scenario planning. Create a publically available geospatial database of approximately 2,000+ known Great Basin springs. Create a summary report on the biotic and abiotic conditions of the known springs.
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
This data release contains numerical U- and Th-isotopic data used to calculate uranium-series age estimates and initial 234U/238U activity ratios for samples of carbonate-rich clast coatings, oncoidal tufa rinds, calcite-replaced rhizoliths, carbonate nodules, and ostracod shells from sites associated with different lake levels of paleo Lake Manix near Barsow, CA. In addition, measured U concentrations and 234U/238U activity ratios for modern streamflow in the Mojave River and shallow groundwater from wells along the course of the Mojave River and nearby vicinity are included to help define the uranium-isotope composition of water that likely supplied paleolakes. Electronic data included herein support age interpretations...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
The U.S. Army Fort Irwin National Training Center (NTC), approximately 35 miles north-northeast of Barstow, California, obtains all of its potable water supply from three groundwater basins (Irwin, Langford, and Bicycle Basins) within the NTC boundaries. In these basins, groundwater withdrawals exceed natural recharge, resulting in water-level declines. However, managed aquifer recharge using recycled water (treated wastewater) has offset water-level declines in Irwin Basin. Additionally, localized water-quality changes have occurred in some parts of Irwin Basin as a result of human activities (for example, wastewater disposal practices, landscape irrigation, and (or) leaking pipes). As part of a research study...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...


map background search result map search result map Environmental Characteristics of Great Basin and Mojave Desert Spring Systems Unsaturated zone soil properties near a dry well and Four-plex baseball field, Fort Irwin National Training Center, San Bernardino County, California, 2019-2020 Field characteristics and photos of core materials from a monitoring well site near a dry well and Four-plex baseball field, Fort Irwin National Training Center, San Bernardino County, California, 2019-2020 Particle-size distributions of core samples collected from the borehole for monitoring well ESW2B at Fort Irwin National Training Center, San Bernardino County, California Habitat Data for Plantago ovata in the Mojave Desert Uranium- and thorium-isotope data used to estimate uranium-series ages of Pleistocene lake deposits in the Lake Manix basin, Mojave Desert, California Species Distribution Model (SDM) for Ambrosia dumosa in the Mojave Desert Species Distribution Model (SDM) for Amsinckia tessellata in the Mojave Desert Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Species Distribution Model (SDM) for Ericameria cooperi in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Hilaria rigida in the Mojave Desert Species Distribution Model (SDM) for Larrea tridentata in the Mojave Desert Species Distribution Model (SDM) for Lupinus odoratus in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Muhlenbergia porteri in the Mojave Desert Species Distribution Model (SDM) for Oenothera deltoides in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria parryi in the Mojave Desert Species Distribution Model (SDM) for Yucca brevifolia in the Mojave Desert Particle-size distributions of core samples collected from the borehole for monitoring well ESW2B at Fort Irwin National Training Center, San Bernardino County, California Field characteristics and photos of core materials from a monitoring well site near a dry well and Four-plex baseball field, Fort Irwin National Training Center, San Bernardino County, California, 2019-2020 Unsaturated zone soil properties near a dry well and Four-plex baseball field, Fort Irwin National Training Center, San Bernardino County, California, 2019-2020 Uranium- and thorium-isotope data used to estimate uranium-series ages of Pleistocene lake deposits in the Lake Manix basin, Mojave Desert, California Habitat Data for Plantago ovata in the Mojave Desert Species Distribution Model (SDM) for Ambrosia dumosa in the Mojave Desert Species Distribution Model (SDM) for Amsinckia tessellata in the Mojave Desert Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Species Distribution Model (SDM) for Ericameria cooperi in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Hilaria rigida in the Mojave Desert Species Distribution Model (SDM) for Larrea tridentata in the Mojave Desert Species Distribution Model (SDM) for Lupinus odoratus in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Muhlenbergia porteri in the Mojave Desert Species Distribution Model (SDM) for Oenothera deltoides in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria parryi in the Mojave Desert Species Distribution Model (SDM) for Yucca brevifolia in the Mojave Desert Environmental Characteristics of Great Basin and Mojave Desert Spring Systems